Molecular identification and effect of salt-tolerant plant growth-promoting rhizobacteria on the biochemical aspect and growth of rice

被引:1
|
作者
Chompa, Sayma Serine [1 ]
Zuan, Ali Tan Kee [1 ]
Amin, Adibah Mohd [1 ]
Hun, Tan Geok [1 ]
Ghazali, Amir Hamzah Ahmad [2 ]
Sadeq, Buraq Musa [1 ]
Akter, Amaily [1 ]
Rahman, Md Ekhlasur [1 ,3 ]
Rashid, Harun Or [4 ]
机构
[1] Univ Putra Malaysia, Fac Agr, Serdang 43400, Selangor, Malaysia
[2] Univ Sains Malaysia, Sch Biol Sci, Gelugor 11800, Penang, Malaysia
[3] Soil Resource Dev Inst, Divis Lab, Dhaka 1215, Bangladesh
[4] Univ Putra Malaysia, Dept Modern Language & Commun, Serdang 43400, Selangor, Malaysia
来源
关键词
Antioxidants; Bacillus tequilensis; Bacillus aryabhattai; Oryza saliva; osmoprotectants; PGPR; plant growth; rice; salinity; STRESS TOLERANCE; SALINITY; SYSTEM; SOIL; L;
D O I
10.4067/S0718-58392024000500606
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Soil salinization, a rising issue globally, is a negative effect of the ever-changing climate, which has drawn attention to, and exacerbated problems related to soil degradation and the decline in wetland rice (Oryza sativa L.) production, leading to an unstable national economy. The use of rhizosphere inhabiting microorganisms (plant growth-promoting rhizobacteria, PGPR) is a viable method for boosting agricultural production on saline soils and reduce salt stress in rice crops. The objective of this study was to support the development of rice under salt stress by using a consortium of bacterial strains. 'Pokkali' rice plants inoculated with single Bacillus tequilensis and B. aryabhattai isolates were compared with consortium and non-inoculated plants while salinity was increased and by irrigation with tap water (control), 30 mM (5 dS m(-1)) and 60 mM (10 dS m(-1)) NaCl. The present study exhibited that inoculation of a mixed inoculum at 5 dS m(-1) resulted in significantly higher dry weight of the shoots and roots of seedlings (9.29 and 1.24 g, respectively) which was due to the increased SPAD value, proline content (7.55 mu mol g(-1) FW), and antioxidant enzyme activity in the inoculated plants. The higher accumulation of osmoprotectants such as proline supported Na+ ion reduction and antioxidant enzymes such as ascorbate peroxidase and reduced polyphenol oxidase content protect against higher cellular damage, eventually leading to increase plant growth performance in saline soil. This study demonstrates some positive effects of the locally isolated salt tolerant consortium PGPR strains on the growth of rice plants under salt stress conditions.
引用
收藏
页码:606 / 619
页数:14
相关论文
共 50 条
  • [21] Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis
    Tsukanova, K. A.
    Chebotar, V. K.
    Meyer, J. J. M.
    Bibikova, T. N.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2017, 113 : 91 - 102
  • [22] Plant Growth-Promoting Actions of Rhizobacteria
    Spaepen, Stijn
    Vanderleyden, Jos
    Okon, Yaacov
    PLANT INNATE IMMUNITY, 2009, 51 : 283 - 320
  • [23] Diversity and Plant Growth-Promoting Effects of Fungal Endophytes Isolated from Salt-Tolerant Plants
    Khalmuratova, Irina
    Choi, Doo-Ho
    Woo, Ju-Ri
    Jeong, Min-Ji
    Oh, Yoosun
    Kim, Young-Guk
    Lee, In-Jung
    Choo, Yeon-Sik
    Kim, Jong-Guk
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2020, 30 (11) : 1680 - 1687
  • [24] Plant responses to plant growth-promoting rhizobacteria
    L. C. van Loon
    European Journal of Plant Pathology, 2007, 119 : 243 - 254
  • [25] Physiological and biochemical traits in coriander affected by plant growth-promoting rhizobacteria under salt stress
    Rabiei, Zahra
    Hosseini, Seyyed Jaber
    Pirdashti, Hemmatollah
    Hazrati, Saeid
    HELIYON, 2020, 6 (10)
  • [26] Plant responses to plant growth-promoting rhizobacteria
    van Loon, L. C.
    EUROPEAN JOURNAL OF PLANT PATHOLOGY, 2007, 119 (03) : 243 - 254
  • [27] A salt-tolerant growth-promoting phyllosphere microbial combination from mangrove plants and its mechanism for promoting salt tolerance in rice
    Yang, Xiangxia
    Yuan, Rongwei
    Yang, Shuangyu
    Dai, Zhian
    Di, Na
    Yang, Haijun
    He, Zhili
    Wei, Mi
    MICROBIOME, 2024, 12 (01):
  • [28] Understanding the salinity stress on plant and developing sustainable management strategies mediated salt-tolerant plant growth-promoting rhizobacteria and CRISPR/Cas9
    Chauhan, Prabhat K.
    Upadhyay, Sudhir K.
    Tripathi, Manikant
    Singh, Rajesh
    Krishna, Deeksha
    Singh, Sushil K.
    Dwivedi, Padmanabh
    BIOTECHNOLOGY AND GENETIC ENGINEERING REVIEWS, 2023, 39 (02) : 311 - 347
  • [29] Isolation and Characterization of Three Plant Growth-Promoting Rhizobacteria for Growth Enhancement of Rice Seedling
    Zeping Liu
    Xiaolong Zhang
    Leibing Li
    Ning Xu
    Yong Hu
    Chao Wang
    Yong Shi
    Dongsheng Li
    Journal of Plant Growth Regulation, 2022, 41 : 1382 - 1393
  • [30] Isolation and Characterization of Three Plant Growth-Promoting Rhizobacteria for Growth Enhancement of Rice Seedling
    Liu, Zeping
    Zhang, Xiaolong
    Li, Leibing
    Xu, Ning
    Hu, Yong
    Wang, Chao
    Shi, Yong
    Li, Dongsheng
    JOURNAL OF PLANT GROWTH REGULATION, 2022, 41 (03) : 1382 - 1393