Electrochemical and catalytic conversion of CO2 into formic acid on Cu-InO2 nano alloy decorated on reduced graphene oxide (Cu-InO2@rGO)

被引:2
|
作者
Munde, Ajay, V [1 ,2 ,3 ]
Bankar, Balasaheb D. [4 ]
Mulik, Balaji B. [1 ,5 ]
Zade, Sanjio S. [2 ,3 ]
Biradar, Ankush [4 ]
Sathe, Bhaskar R. [1 ,6 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Chem, Chhatrapati Sambhajinagar 431004, Maharashtra, India
[2] Indian Inst Sci Educ & Res IISER Kolkata, Dept Chem Sci, Nadia 741246, W Bengal, India
[3] Indian Inst Sci Educ & Res IISER Kolkata, Ctr Adv Funct Mat, Nadia 741246, W Bengal, India
[4] CSIR Cent Salt & Marine Chem Res Inst, Inorgan Mat & Catalysis Div, Bhavnagar 364002, Gujarat, India
[5] MGM Univ, Chhatrapati Sambhajinagar 431001, Maharashtra, India
[6] Dr Babasaheb Ambedkar Marathwada Univ, Dept Nanosci & Technol, Chhatrapati Sambhajinagar 431004, Maharashtra, India
关键词
CO2; reduction; Bimetallic alloy; Cu-InO2 @rGO nanoelectrodes; Energy and environmental remediation; Value-added chemicals; CARBON-DIOXIDE; REDUCTION; FORMATE; ELECTROCATALYSTS;
D O I
10.1016/j.apcata.2024.119760
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The catalytic and electrochemical hydrogenation of CO2 offers the option of a carbon-neutral cycle for sustainable energy and synthesis of value-added chemicals. The synthesized noble metal-free Cu-InO2@rGO nanocomposite has been characterized by various techniques such as scanning electron microscopy (SEM) confirming the spherical shape of Cu-InO2 nanoalloy embedded on rGO, the average size calculated by high resolution-transmission electron microscopy (HR-TEM) shows Cu-InO2 (similar to 4 nm) alloy is on rGO surface (similar to 100 nm). The XRD pattern confirms the Face centered cubic (FCC) crystal structure of Cu-InO2@rGO, and Furrier transform- Infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) analyses of Cu-In-O exist in the nanomaterials. The linear sweep voltammetry (LSV) demonstrates an ultra-low potential of -0.9 V vs. SCE. The bulk electrolysis on Cu-InO2@rGO electrocatalyst demonstrated at a potential of -1.1 V vs. SCE to reach HCOOH with a Faradic yield of 76.10%. Electrochemical CO2 reduction on Cu-InO2@rGO is responsible for the variation of adsorption of CO2 intermediates due to controlled selectivity and inhibiting the formation of H-2 and CO. In catalytic hydrogenation used as the same catalyst was found, an excellent yield towards HCOOH is 5.5 mmol. Current studies have highlighted the enhancement in activity along with selectivity for product formation could be due to having a capable active interface from electrocatalysts for low cost and proficient production of fuels.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Sulfide-Derived Copper for Electrochemical Conversion of CO2 to Formic Acid
    Phillips, Katherine R.
    Katayama, Yu
    Hwang, Jonathan
    Shao-Horn, Yang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (15): : 4407 - 4412
  • [22] Electrochemical CO2 conversion to formic acid using engineered enzymatic catalysts in a batch reactor
    Moreno, Daniel
    Omosebi, Ayokunle
    Jeon, Byoung Wook
    Abad, Keemia
    Kim, Yong Hwan
    Thompson, Jesse
    Liu, Kunlei
    JOURNAL OF CO2 UTILIZATION, 2023, 70
  • [23] A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid
    Hu, Leiming
    Wrubel, Jacob A.
    Baez-Cotto, Carlos M.
    Intia, Fry
    Park, Jae Hyung
    Kropf, Arthur Jeremy
    Kariuki, Nancy
    Huang, Zhe
    Farghaly, Ahmed
    Amichi, Lynda
    Saha, Prantik
    Tao, Ling
    Cullen, David A.
    Myers, Deborah J.
    Ferrandon, Magali S.
    Neyerlin, K. C.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [24] Electrochemical conversion of CO2 to formic acid using a Sn based cathode: Combined effect of temperature and pressure
    Proietto, Federica
    Rinicella, Riccardo
    Galia, Alessandro
    Scialdone, Onofrio
    JOURNAL OF CO2 UTILIZATION, 2023, 67
  • [25] Sn-Decorated Cu for Selective Electrochemical CO2 to CO Conversion: Precision Architecture beyond Composition Design
    Ju, Wenbo
    Zeng, Juqin
    Bejtka, Katarzyna
    Ma, Huan
    Rentsch, Daniel
    Castellino, Micaela
    Sacco, Adriano
    Pirri, Candido F.
    Battaglia, Corsin
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (01): : 867 - 872
  • [26] Tuning the selectivity of CO2 conversion to CO on partially reduced Cu2O/ZnO heterogeneous interface
    Xiang, Tianci
    Liu, Ting
    Ouyang, Ting
    Zhao, Shenlong
    Liu, Zhao-Qing
    INTERDISCIPLINARY MATERIALS, 2024, 3 (03): : 380 - 388
  • [27] Hydrogenation of CO2 to formic acid over a Cu-embedded graphene: A DFT study
    Sirijaraensre, J.
    Limtrakul, J.
    APPLIED SURFACE SCIENCE, 2016, 364 : 241 - 248
  • [28] Catalytic conversion of NaHCO3 into formic acid in mild hydrothermal conditions for CO2 utilization
    Wu, Bing
    Gao, Ying
    Jin, Fangming
    Cao, Jianglin
    Du, Yingxun
    Zhang, Yalei
    CATALYSIS TODAY, 2009, 148 (3-4) : 405 - 410
  • [29] Towards the Electrochemical Conversion of CO2 to Formic Acid at an Applicative Scale: Technical and Economic Analysis of Most Promising Routes
    Proietto, Federica
    Galia, Alessandro
    Scialdone, Onofrio
    CHEMELECTROCHEM, 2021, 8 (12) : 2169 - 2179
  • [30] Highly dispersive trace silver decorated Cu/Cu2O composites boosting electrochemical CO2 reduction to ethanol
    Su, Wanyu
    Ma, Lushan
    Cheng, Qingqing
    Wen, Ke
    Wang, Pengfei
    Hu, Weibo
    Zou, Liangliang
    Fang, Jianhui
    Yang, Hui
    JOURNAL OF CO2 UTILIZATION, 2021, 52