Development and validation of a CT-based deep learning radiomics signature to predict lymph node metastasis in oropharyngeal squamous cell carcinoma: a multicentre study

被引:0
作者
Jiang, Tianzi [1 ]
Wang, Hexiang [1 ]
Li, Jie [1 ]
Wang, Tongyu [1 ]
Zhan, Xiaohong [2 ]
Wang, Jingqun [3 ]
Wang, Ning [4 ]
Nie, Pei [1 ]
Cui, Shiyu [1 ]
Zhao, Xindi [1 ]
Hao, Dapeng [1 ]
机构
[1] Qingdao Univ, Affiliated Hosp, Sch Med, Dept Radiol, 16 Jiangsu Rd, Qingdao 266003, Shandong, Peoples R China
[2] Qingdao Univ, Affiliated Hosp, Sch Med, Dept Pathol, Qingdao 266003, Shandong, Peoples R China
[3] Xiamen Univ, Affiliated Hosp 1, Sch Med, Dept Radiol, Xiamen 361000, Fujian, Peoples R China
[4] Shandong First Med Univ, Shandong Med Univ 1, Sch Med, Dept Radiol,Shandong Prov Hosp, Jinan 250000, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
oropharyngeal neoplasms; radiomics; deep learning; lymph node metastasis; tomography; X-ray computed; INDIVIDUAL PROGNOSIS; COMPUTED-TOMOGRAPHY; DIAGNOSIS TRIPOD; NECK; HEAD; SURVIVAL; MODEL;
D O I
10.1093/dmfr/twae051
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Objectives Lymph node metastasis (LNM) is a pivotal determinant that influences the treatment strategies and prognosis for oropharyngeal squamous cell carcinoma (OPSCC) patients. This study aims to establish and verify a deep learning (DL) radiomics model for the prediction of LNM in OPSCCs using contrast-enhanced computed tomography (CECT).Methods A retrospective analysis included 279 OPSCC patients from 3 institutions. CECT images were used for handcrafted (HCR) and DL feature extraction. Dimensionality reduction for HCR features used recursive feature elimination (RFE) and least absolute shrinkage and selection operator (LASSO) algorithms, whereas DL feature dimensionality reduction used variance-threshold and RFE algorithms. Radiomics signatures were constructed using six machine learning classifiers. A combined model was then constructed using the screened DL, HCR, and clinical features. The area under the receiver operating characteristic curve (AUC) served to quantify the model's performance, and calibration curves were utilized to assess its calibration.Results The combined model exhibited robust performance, achieving AUC values of 0.909 (95% CI, 0.861-0.957) in the training cohort, 0.884 (95% CI, 0.800-0.968) in the internal validation cohort, and 0.865 (95% CI, 0.791-0.939) in the external validation cohort. It outperformed both the clinical model and best-performing radiomics model. Moreover, calibration was deemed satisfactory.Conclusions The combined model based on CECT demonstrates the potential to predict LNM in OPSCCs preoperatively, offering a valuable tool for more precise and tailored treatment strategies.Advances in knowledge This study presents a novel combined model integrating clinical factors with DL radiomics, significantly enhancing preoperative LNM prediction in OPSCC.
引用
收藏
页码:77 / 87
页数:11
相关论文
共 44 条
  • [1] Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal
    Asl, Babak Mohammadzadeh
    Setarehdan, Seyed Kamaledin
    Mohebbi, Maryam
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2008, 44 (01) : 51 - 64
  • [2] Computed Tomography Radiomics Predicts HPV Status and Local Tumor Control After Definitive Radiochemotherapy in Head and Neck Squamous Cell Carcinoma
    Bogowicz, Marta
    Riesterer, Oliver
    Ikenberg, Kristian
    Stieb, Sonja
    Moch, Holger
    Studer, Gabriela
    Guckenberger, Matthias
    Tanadini-Lang, Stephanie
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2017, 99 (04): : 921 - 928
  • [3] Magnetic resonance imaging based radiomics prediction of Human Papillomavirus infection status and overall survival in oropharyngeal squamous cell carcinoma
    Boot, Paulien A.
    Mes, Steven W.
    de Bloeme, Christiaan M.
    Martens, Roland M.
    Leemans, C. Rene
    Boellaard, Ronald
    van de Wiel, Mark A.
    de Graaf, Pim
    [J]. ORAL ONCOLOGY, 2023, 137
  • [4] Head and Neck Cancers, Version 1.2022 Featured Updates to the NCCN Guidelines
    Caudell, Jimmy J.
    Gillison, Maura L.
    Maghami, Ellie
    Spencer, Sharon
    Pfister, David G.
    Adkins, Douglas
    Birkeland, Andrew C.
    Brizel, David M.
    Busse, Paul M.
    Cmelak, Anthony J.
    Colevas, A. Dimitrios
    Eisele, David W.
    Galloway, Thomas
    Geiger, Jessica L.
    Haddad, Robert, I
    Hicks, Wesley L.
    Hitchcock, Ying J.
    Jimeno, Antonio
    Leizman, Debra
    Mell, Loren K.
    Mittal, Bharat B.
    Pinto, Harlan A.
    Rocco, James W.
    Rodriguez, Cristina P.
    Savvides, Panayiotis S.
    Schwartz, David
    Shah, Jatin P.
    Sher, David
    St John, Maie
    Weber, Randal S.
    Weinstein, Gregory
    Worden, Frank
    Bruce, Justine Yang
    Yom, Sue S.
    Zhen, Weining
    Burns, Jennifer L.
    Darlow, Susan D.
    [J]. JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2022, 20 (03): : 224 - 234
  • [5] An MRI-based radiomics-clinical nomogram for the overall survival prediction in patients with hypopharyngeal squamous cell carcinoma: a multi-cohort study
    Chen, Juan
    Lu, Shanhong
    Mao, Yitao
    Tan, Lei
    Li, Guo
    Gao, Yan
    Tan, Pingqing
    Huang, Donghai
    Zhang, Xin
    Qiu, Yuanzheng
    Liu, Yong
    [J]. EUROPEAN RADIOLOGY, 2022, 32 (03) : 1548 - 1557
  • [6] Dual-Energy Computed Tomography in Detecting and Predicting Lymph Node Metastasis in Malignant Tumor Patients: A Comprehensive Review
    Chen, Mengting
    Jiang, Yundan
    Zhou, Xuhui
    Wu, Di
    Xie, Qiuxia
    [J]. DIAGNOSTICS, 2024, 14 (04)
  • [7] Prediction of Human Papillomavirus Status and Overall Survival in Patients with Untreated Oropharyngeal Squamous Cell Carcinoma: Development and Validation of CT-Based Radiomics
    Choi, Y.
    Nam, Y.
    Jang, J.
    Shin, N-Y
    Ahn, K-J
    Kim, B-S
    Lee, Y-S
    Kim, M-S
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2020, 41 (10) : 1897 - 1904
  • [8] A Scoring System for Prediction of Cervical Lymph Node Metastasis in Patients with Head and Neck Squamous Cell Carcinoma
    Chung, M. S.
    Choi, Y. J.
    Kim, S. O.
    Lee, Y. S.
    Hong, J. Y.
    Lee, J. H.
    Baek, J. H.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (06) : 1049 - 1054
  • [9] Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1016/j.jclinepi.2014.11.010, 10.1186/s12916-014-0241-z, 10.1136/bmj.g7594, 10.1038/bjc.2014.639, 10.1016/j.eururo.2014.11.025, 10.1002/bjs.9736, 10.7326/M14-0698]
  • [10] Collins GS, 2015, BMJ-BRIT MED J, V350, DOI [10.1111/1471-0528.13244, 10.1136/bmj.g7594]