HERMITIAN PRECONDITIONING FOR A CLASS OF NON-HERMITIAN LINEAR SYSTEMS

被引:1
作者
Spillane, Nicole [1 ]
机构
[1] Ecole Polytech, Inst Polytech Paris, CNRS, CMAP, F-91128 Palaiseau, France
关键词
Key words. GMRES; preconditioning; convergence; Krylov subspace method; GCR; minimal residual iteration; MINIMAL RESIDUAL METHODS; DOMAIN DECOMPOSITION; NONSYMMETRIC SYSTEMS; ITERATIVE METHODS; COARSE SPACES; GMRES; ALGORITHM; MATRIX; CHOICE;
D O I
10.1137/23M1559026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work considers the convergence of GMRES for nonsingular problems. GMRES is interpreted as the generalized conjugate residual method which allows for simple proofs of the convergence estimates. Preconditioning and weighted norms within GMRES are considered. The objective is to provide a way of choosing the preconditioner and GMRES norm that ensures fast convergence. The main focus of the article is on Hermitian preconditioning (even for non-Hermitian problems). It is proposed to choose a Hermitian preconditioner H and to apply GMRES in the inner product induced by H. If, moreover, the problem matrix A is positive definite, then a new convergence bound is proved that depends only on how well H preconditions the Hermitian part of A, and on how non-Hermitian A is. In particular, if a scalable preconditioner is known for the Hermitian part of A, then the proposed method is also scalable. This result is illustrated numerically.
引用
收藏
页码:A1903 / A1922
页数:20
相关论文
共 48 条
[1]   Hermitian and skew-Hermitian splitting methods for non-hermitian positive definite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Ng, MK .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (03) :603-626
[2]   Some remarks on the Elman estimate for GMRES [J].
Beckermann, B ;
Gereinov, SA ;
Tyrtyshnikov, EE .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 27 (03) :772-778
[3]  
BONAZZOLI M., 2024, Domain Decomposition Methods in Science and Engineering XXVII, P61
[4]   Analysis of the SORAS Domain Decomposition Preconditioner for Non-self-adjoint or Indefinite Problems [J].
Bonazzoli, Marcella ;
Claeys, Xavier ;
Nataf, Frederic ;
Tournier, Pierre-Henri .
JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (01)
[5]  
Bootland Niall, 2022, Domain Decomposition Methods in Science and Engineering XXVI. Lecture Notes in Computational Science and Engineering (145), P117, DOI 10.1007/978-3-030-95025-5_10
[6]   Overlapping Schwarz methods with GenEO coarse spaces for indefinite and nonself-adjoint problems [J].
BOOTLAND, N. I. A. L. L. ;
DOLEAN, V. I. C. T. O. R. I. T. A. ;
GRAHAM, I. V. A. N. G. ;
MA, C. H. U. P. E. N. G. ;
SCHEICHL, R. O. B. E. R. T. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (04) :1899-1936
[7]  
CAI C., 1989, Ph.D. thesis
[8]  
CAI XC, 1992, SIAM PROC S, P224
[9]   DOMAIN DECOMPOSITION ALGORITHMS FOR INDEFINITE ELLIPTIC PROBLEMS [J].
CAI, XC ;
WIDLUND, OB .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (01) :243-258
[10]  
Calvo JG, 2016, ELECTRON T NUMER ANA, V45, P524