Oxidative stress elicits the remodeling of vimentin filaments into biomolecular condensates

被引:1
|
作者
Martinez-Cenalmor, Paula [1 ]
Martinez, Alma E. [1 ]
Moneo-Corcuera, Diego [1 ]
Gonzalez-Jimenez, Patricia [1 ]
Perez-Sala, Dolores [1 ]
机构
[1] CSIC, Ctr Invest Biol Margarita Salas, Dept Cellular & Mol Biosci, Madrid 28040, Spain
来源
REDOX BIOLOGY | 2024年 / 75卷
关键词
Cysteine modification; Thiol group oxidation; Intermediate filaments; Biomolecular condensates; Phase separation; Oxidative protein modifications; LIQUID PHASE-SEPARATION; INTERMEDIATE-FILAMENTS; EXCHANGE SUBUNITS; PRECURSORS; DIAMIDE; TARGET;
D O I
10.1016/j.redox.2024.103282
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The intermediate filament protein vimentin performs an essential role in cytoskeletal interplay and dynamics, mechanosensing and cellular stress responses. In pathology, vimentin is a key player in tumorigenesis, fibrosis and infection. Vimentin filaments undergo distinct and versatile reorganizations, and behave as redox sensors. The vimentin monomer possesses a central alpha-helical rod domain flanked by N- and C-terminal low complexity domains. Interactions between this type of domains play an important function in the formation of phaseseparated biomolecular condensates, which in turn are critical for the organization of cellular components. Here we show that several oxidants, including hydrogen peroxide and diamide, elicit the remodeling of vimentin filaments into small particles. Oxidative stress elicited by diamide induces a fast dissociation of filaments into circular, motile dots, which requires the presence of the single vimentin cysteine residue, C328. This effect is reversible, and filament reassembly can occur within minutes of oxidant removal. Diamide-elicited vimentin droplets recover fluorescence after photobleaching. Moreover, fusion of cells expressing differentially tagged vimentin allows the detection of dots positive for both tags, indicating that vimentin dots merge upon cell fusion. The aliphatic alcohol 1,6-hexanediol, known to alter interactions between low complexity domains, readily dissolves diamide-elicited vimentin dots at low concentrations, in a C328 dependent manner, and hampers reassembly. Taken together, these results indicate that vimentin oxidation promotes a fast and reversible filament remodeling into biomolecular condensate-like structures, and provide primary evidence of its regulated phase separation. Moreover, we hypothesize that filament to droplet transition could play a protective role against irreversible damage of the vimentin network by oxidative stress.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stress response
    Morishita, Kazuhiro
    Watanabe, Kengo
    Naguro, Isao
    Ichijo, Hidenori
    CELL REPORTS, 2023, 42 (04):
  • [32] Systemic oxidative stress and vascular remodeling
    Mezzetti, A
    Guglielmi, MD
    Costantini, F
    Pierdomenic, SD
    Ucchino, S
    Napolitano, AM
    Cuccurullo, F
    Romano, F
    ATHEROSCLEROSIS, 1997, 133 (02) : 38 - 38
  • [33] Implantation of Neural Probes in the Brain Elicits Oxidative Stress
    Ereifej, Evon S.
    Rial, Griffin M.
    Hermann, John K.
    Smith, Cara S.
    Meade, Seth M.
    Rayyan, Jacob M.
    Chen, Keying
    Feng, He
    Capadona, Jeffrey R.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2018, 6
  • [35] Vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic stress
    Nicole C. A. van Engeland
    Freddy Suarez Rodriguez
    Adolfo Rivero-Müller
    Tommaso Ristori
    Camille L. Duran
    Oscar M. J. A. Stassen
    Daniel Antfolk
    Rob C. H. Driessen
    Saku Ruohonen
    Suvi T. Ruohonen
    Salla Nuutinen
    Eriika Savontaus
    Sandra Loerakker
    Kayla J. Bayless
    Marika Sjöqvist
    Carlijn V. C. Bouten
    John E. Eriksson
    Cecilia M. Sahlgren
    Scientific Reports, 9
  • [36] Vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic stress
    van Engeland, Nicole C. A.
    Rodriguez, Freddy Suarez
    Rivero-Mueller, Adolfo
    Ristori, Tommaso
    Duran, Camille L.
    Stassen, Oscar M. J. A.
    Antfolk, Daniel
    Driessen, Rob C. H.
    Ruohonen, Saku
    Ruohonen, Suvi T.
    Nuutinen, Salla
    Savontaus, Eriika
    Loerakker, Sandra
    Bayless, Kayla J.
    Sjoqvist, Marika
    Bouten, Carlijn V. C.
    Eriksson, John E.
    Sahlgren, Cecilia M.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [37] Oxidative Stress-mediated Biomolecular Damage and Inflammation in Tumorigenesis
    Sesti, Fabiola
    Tsitsilonis, Ourania E.
    Kotsinas, Athanassios
    Trougakos, Ioannis P.
    IN VIVO, 2012, 26 (03): : 395 - 402
  • [38] Oxidative Stress and Cardiac Remodeling: An Updated Edge
    Rababa'h, Abeer M.
    Guillory, Ashley N.
    Mustafa, Rima
    Hijjawi, Tamara
    CURRENT CARDIOLOGY REVIEWS, 2018, 14 (01) : 53 - 59
  • [39] Oxidative stress, free radicals and bone remodeling
    Banfi, Giuseppe
    Iorio, Eugenio L.
    Corsi, Massimiliano M.
    CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2008, 46 (11) : 1550 - 1555
  • [40] Oxidative Stress as a Therapeutic Target of Cardiac Remodeling
    Martins, Danilo
    Garcia, Leonardo Rufino
    Queiroz, Diego Aparecido Rios
    Lazzarin, Taline
    Tonon, Carolina Rodrigues
    Balin, Paola da Silva
    Polegato, Bertha Furlan
    de Paiva, Sergio Alberto Rupp
    Azevedo, Paula Schmidt
    Minicucci, Marcos Ferreira
    Zornoff, Leonardo
    ANTIOXIDANTS, 2022, 11 (12)