Multi-Person Action Recognition Based on Millimeter-Wave Radar Point Cloud

被引:3
|
作者
Dang, Xiaochao [1 ,2 ]
Fan, Kai [1 ]
Li, Fenfang [1 ]
Tang, Yangyang [1 ]
Gao, Yifei [1 ]
Wang, Yue [1 ]
机构
[1] Northwest Normal Univ, Coll Comp Sci & Engn, Lanzhou 730070, Peoples R China
[2] Gansu Prov Internet of Things Engn Res Ctr, Lanzhou 730070, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 16期
基金
中国国家自然科学基金;
关键词
human action recognition; millimeter-wave radar; point cloud; filtering; deep learning;
D O I
10.3390/app14167253
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application This research has important applications in areas such as smart furniture and human-computer interaction. It will bring people a more efficient and comfortable living experience as well as a new smart experience. Abstract Human action recognition has many application prospects in human-computer interactions, innovative furniture, healthcare, and other fields. The traditional human motion recognition methods have limitations in privacy protection, complex environments, and multi-person scenarios. Millimeter-wave radar has attracted attention due to its ultra-high resolution and all-weather operation. Many existing studies have discussed the application of millimeter-wave radar in single-person scenarios, but only some have addressed the problem of action recognition in multi-person scenarios. This paper uses a commercial millimeter-wave radar device for human action recognition in multi-person scenarios. In order to solve the problems of severe interference and complex target segmentation in multiplayer scenarios, we propose a filtering method based on millimeter-wave inter-frame differences to filter the collected human point cloud data. We then use the DBSCAN algorithm and the Hungarian algorithm to segment the target, and finally input the data into a neural network for classification. The classification accuracy of the system proposed in this paper reaches 92.2% in multi-person scenarios through experimental tests with the five actions we set.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Millimeter-Wave Radar Point Cloud Gesture Recognition Based on Multiscale Feature Extraction
    Li, Wei
    Guo, Zhiqi
    Han, Zhuangzhi
    ELECTRONICS, 2025, 14 (02):
  • [2] Activity Recognition Based on Millimeter-Wave Radar by Fusing Point Cloud and Range-Doppler Information
    Huang, Yuchen
    Li, Wei
    Dou, Zhiyang
    Zou, Wantong
    Zhang, Anye
    Li, Zan
    SIGNALS, 2022, 3 (02): : 266 - 283
  • [3] Human Activity Recognition Based on Point Clouds from Millimeter-Wave Radar
    Lim, Seungchan
    Park, Chaewoon
    Lee, Seongjoo
    Jung, Yunho
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [4] Human Movement Recognition Based on 3D Point Cloud Spatiotemporal Information from Millimeter-Wave Radar
    Dang, Xiaochao
    Jin, Peng
    Hao, Zhanjun
    Ke, Wenze
    Deng, Han
    Wang, Li
    SENSORS, 2023, 23 (23)
  • [5] Hand gesture recognition based on millimeter-wave radar using iFormer
    Chen, Jiaxin
    Wen, Pengwei
    Chen, Gao
    Wang, Yu
    Wang, Yifan
    Zheng, Jianpeng
    2024 9TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING, ICSIP, 2024, : 22 - 26
  • [6] mm-TPG: Traffic Policemen Gesture Recognition Based on Millimeter Wave Radar Point Cloud
    Dang, Xiaochao
    Ke, Wenze
    Hao, Zhanjun
    Jin, Peng
    Deng, Han
    Sheng, Ying
    SENSORS, 2023, 23 (15)
  • [7] PGGait: Gait Recognition Based on Millimeter-Wave Radar Spatio-Temporal Sensing of Multidimensional Point Clouds
    Dang, Xiaochao
    Tang, Yangyang
    Hao, Zhanjun
    Gao, Yifei
    Fan, Kai
    Wang, Yue
    SENSORS, 2024, 24 (01)
  • [8] A Novel Spatial-Temporal Network for Gait Recognition Using Millimeter-Wave Radar Point Cloud Videos
    Ma, Chongrun
    Liu, Zhenyu
    ELECTRONICS, 2023, 12 (23)
  • [9] Driver Head-Hand Cooperative Action Recognition Based on FMCW Millimeter-Wave Radar and Deep Learning
    Zhang, Lianlong
    Chen, Xiaodong
    Chen, Zexin
    Zheng, Jiawen
    Diao, Yinliang
    SENSORS, 2025, 25 (08)
  • [10] Indoor human action recognition based on millimeter-wave radar micro-doppler signature
    Yin, Wei
    Shi, Ling-Feng
    Shi, Yifan
    MEASUREMENT, 2024, 235