nuScenesComplex: A More Rigorous Evaluation Framework for End-to-End Autonomous Driving Planning

被引:0
作者
Nguyen, Dung [1 ]
Zhang, Gang [1 ]
Pan, Hujie [2 ]
Hu, Xiaolin [1 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, Beijing, Peoples R China
[2] SAIC Intelligent Technol, Shanghai, Peoples R China
来源
ADVANCES IN NEURAL NETWORKS-ISNN 2024 | 2024年 / 14827卷
基金
中国国家自然科学基金;
关键词
Autonomous driving; Planning; Dataset; Metrics;
D O I
10.1007/978-981-97-4399-5_46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The end-to-end autonomous driving planning task poses a significant challenge due to its inherent complexities, especially when existing datasets are inadequate for evaluating models' performance properly. While prior research extensively employs the nuScenes dataset for open-loop training and evaluation, its predominantly trivial scenes fail to effectively measure model performance in complex and dangerous scenarios. This study conducts a thorough analysis of the nuScenes evaluation set and proposes a specialized sub-dataset that spotlights challenging scenarios for more rigorous evaluation. Furthermore, our research aims to address the limitations of the current evaluation metric, the Collision Rate, which tends to underestimate the collision rate in real-world scenarios. We introduce a new metric, termed Worst-Case Collision Rate. This metric is indicative of the frequency at which the model makes highly risky decisions. Code and information about the dataset is available at https://github.com/ktnguyen17/nuScenesComplex.
引用
收藏
页码:482 / 491
页数:10
相关论文
共 18 条
[1]   Segmentation and Recognition Using Structure from Motion Point Clouds [J].
Brostow, Gabriel J. ;
Shotton, Jamie ;
Fauqueur, Julien ;
Cipolla, Roberto .
COMPUTER VISION - ECCV 2008, PT I, PROCEEDINGS, 2008, 5302 :44-+
[2]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[3]   NEAT: Neural Attention Fields for End-to-End Autonomous Driving [J].
Chitta, Kashyap ;
Prakash, Aditya ;
Geiger, Andreas .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :15773-15783
[4]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[5]  
Dosovitskiy A, 2017, PR MACH LEARN RES, V78
[6]   Large Scale Interactive Motion Forecasting for Autonomous Driving : The WAYMO OPEN MOTION DATASET [J].
Ettinger, Scott ;
Cheng, Shuyang ;
Caine, Benjamin ;
Liu, Chenxi ;
Zhao, Hang ;
Pradhan, Sabeek ;
Chai, Yuning ;
Sapp, Ben ;
Qi, Charles ;
Zhou, Yin ;
Yang, Zoey ;
Chouard, Aurelien ;
Sun, Pei ;
Ngiam, Jiquan ;
Vasudevan, Vijay ;
McCauley, Alexander ;
Shlens, Jonathon ;
Anguelov, Dragomir .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9690-9699
[7]  
Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
[8]   ST-P3: End-to-End Vision-Based Autonomous Driving via Spatial-Temporal Feature Learning [J].
Hu, Shengchao ;
Chen, Li ;
Wu, Penghao ;
Li, Hongyang ;
Yan, Junchi ;
Tao, Dacheng .
COMPUTER VISION, ECCV 2022, PT XXXVIII, 2022, 13698 :533-549
[9]   Planning-oriented Autonomous Driving [J].
Hu, Yihan ;
Yang, Jiazhi ;
Chen, Li ;
Li, Keyu ;
Sima, Chonghao ;
Zhu, Xizhou ;
Chai, Siqi ;
Du, Senyao ;
Lin, Tianwei ;
Wang, Wenhai ;
Lu, Lewei ;
Jia, Xiaosong ;
Liu, Qiang ;
Dai, Jifeng ;
Qiao, Yu ;
Li, Hongyang .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :17853-17862
[10]  
Jiang B, 2023, Arxiv, DOI arXiv:2303.12077