Universality of Efimov states in highly mass-imbalanced cold-atom mixtures with van der Waals and dipole interactions

被引:2
作者
Oi, Kazuki [1 ,3 ]
Naidon, Pascal [2 ]
Endo, Shimpei [3 ]
机构
[1] Tohoku Univ, Dept Phys, Sendai 9808578, Japan
[2] RIKEN, Nishina Ctr, Few Body Syst Phys Lab, Wako 3510198, Japan
[3] Univ Electrocommun, Dept Engn Sci, Chofu, Tokyo 1828585, Japan
关键词
FESHBACH RESONANCES; SCATTERING LENGTH; ENERGY-LEVELS; SYSTEMS; EQUATION; GAS;
D O I
10.1103/PhysRevA.110.033305
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study three-body systems in a mass-imbalanced, two-component, cold-atom mixture, and we investigate the three-body parameter of their Efimov states for both bosonic and fermionic systems, with a major focus on the Er-Er-Li Efimov states. For a system interacting solely via van der Waals interactions, the van der Waals universality of the three-body parameter is analytically derived using the quantum defect theory. With the addition of a perturbative dipole interaction between the heavy atoms, the three-body parameters of the bosonic and fermionic Efimov states are found to behave differently. When the dipole interaction is as strong as the van der Waals interaction, corresponding to realistic Er-Er-Li Efimov states, we show that the van der Waals universality persists once the effects of the nonperturbative dipole interaction are renormalized into the s-wave and p-wave scattering parameters between the heavy atoms. For a dipole interaction much stronger than the van der Waals interaction, we find that the universality of the Efimov states can be alternatively characterized by a quasi-one-dimensional scattering parameter due to a strong anisotropic deformation of the Efimov wave functions. Our work thus clarifies the interplay of isotropic and anisotropic forces in the universality of the Efimov states. Based on the renormalized van der Waals universality, the three-body parameter is estimated for specific isotopes of Er-Li cold-atom mixtures.
引用
收藏
页数:19
相关论文
共 89 条
[1]   Reaching Fermi Degeneracy via Universal Dipolar Scattering [J].
Aikawa, K. ;
Frisch, A. ;
Mark, M. ;
Baier, S. ;
Grimm, R. ;
Ferlaino, F. .
PHYSICAL REVIEW LETTERS, 2014, 112 (01)
[2]   Bose-Einstein Condensation of Erbium [J].
Aikawa, K. ;
Frisch, A. ;
Mark, M. ;
Baier, S. ;
Rietzler, A. ;
Grimm, R. ;
Ferlaino, F. .
PHYSICAL REVIEW LETTERS, 2012, 108 (21)
[3]   Universality of the Three-Body Parameter for Efimov States in Ultracold Cesium [J].
Berninger, M. ;
Zenesini, A. ;
Huang, B. ;
Harm, W. ;
Naegerl, H. -C. ;
Ferlaino, F. ;
Grimm, R. ;
Julienne, P. S. ;
Hutson, J. M. .
PHYSICAL REVIEW LETTERS, 2011, 107 (12)
[4]   The scattering of neutrons by protons [J].
Bethe, HA ;
Peierls, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1935, 149 (A866) :0176-0183
[5]   Quasi-universal dipolar scattering in cold and ultracold gases [J].
Bohn, J. L. ;
Cavagnero, M. ;
Ticknor, C. .
NEW JOURNAL OF PHYSICS, 2009, 11
[6]   Universality in few-body systems with large scattering length [J].
Braaten, Eric ;
Hammer, H. -W. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 428 (5-6) :259-390
[7]   Precision Test of the Limits to Universality in Few-Body Physics [J].
Chapurin, Roman ;
Xie, Xin ;
Van de Graaff, Michael J. ;
Popowski, Jared S. ;
D'Incao, Jose P. ;
Julienne, Paul S. ;
Ye, Jun ;
Cornell, Eric A. .
PHYSICAL REVIEW LETTERS, 2019, 123 (23)
[8]   Feshbach resonances in ultracold gases [J].
Chin, Cheng ;
Grimm, Rudolf ;
Julienne, Paul ;
Tiesinga, Eite .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1225-1286
[9]   Dipolar physics: a review of experiments with magnetic quantum gases [J].
Chomaz, Lauriane ;
Ferrier-Barbut, Igor ;
Ferlaino, Francesca ;
Laburthe-Tolra, Bruno ;
Lev, Benjamin L. ;
Pfau, Tilman .
REPORTS ON PROGRESS IN PHYSICS, 2023, 86 (02)
[10]   Exploring Ultracold Collisions in 6Li-53Cr Fermi Mixtures: Feshbach Resonances and Scattering Properties of a Novel Alkali-Transition Metal System [J].
Ciamei, A. ;
Finelli, S. ;
Trenkwalder, A. ;
Inguscio, M. ;
Simoni, A. ;
Zaccanti, M. .
PHYSICAL REVIEW LETTERS, 2022, 129 (09)