Ensemble CNN-ViT Using Feature-Level Fusion for Gait Recognition

被引:0
|
作者
Mogan, Jashila Nair [1 ]
Lee, Chin Poo [1 ]
Lim, Kian Ming [2 ]
机构
[1] Multimedia Univ, Fac Informat Sci & Technol, Melaka 75450, Malaysia
[2] Univ Nottingham Ningbo China, Sch Comp Sci, Ningbo 315100, Zhejiang, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Feature extraction; Computational modeling; Hidden Markov models; Convolutional neural networks; Transformers; Deep learning; Biological system modeling; ensemble; fusion; feature-fusion; gait; gait recognition; IMAGE; MODEL;
D O I
10.1109/ACCESS.2024.3439602
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Individual deep learning models showcase impressive performance; however, the capacity of a single model might fall short in capturing the full spectrum of intricate patterns present in the input data. Thus, relying solely on a single model may hamper the attainment of optimal results and broader generalization. In light of this, the paper presents an ensemble method that leverages the strengths of multiple Convolutional Neural Networks (CNNs) and Transformer models to elevate gait recognition performance. Additionally, a novel gait representation named windowed Gait Energy Image (GEI) is introduced, obtained by averaging gait frames irrespective of gait cycles. Firstly, the windowed GEI is input to the Convolutional Neural Networks and Transformer models to learn significant gait features. Each model is followed by a Multilayer Perceptron (MLP) to encode the relationship between the extracted features and corresponding class labels. Subsequently, the extracted gait features from each model are flattened and concatenated into a cohesive feature representation before passing through another MLP for subject classification. The performance of the proposed method was assessed on three datasets: OU-ISIR dataset D, CASIA-B, and OU-LP dataset. Experimental results demonstrated remarkable improvements compared to existing methods across all three datasets. The proposed method achieved accuracy rates of 100% on OU-ISIR D, 99.93% on CASIA-B, and 99.94% on OU-LP, showcasing the superior performance of the Ensemble CNN-ViT model using feature-level fusion compared to state-of-the-art methods.
引用
收藏
页码:108573 / 108583
页数:11
相关论文
共 50 条
  • [21] Multimodal feature fusion for CNN-based gait recognition: an empirical comparison
    Castro, Francisco M.
    Marin-Jimenez, Manuel J.
    Guil, Nicolas
    de la Blanca, Nicolas
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (17) : 14173 - 14193
  • [22] Multimodal feature fusion for CNN-based gait recognition: an empirical comparison
    Francisco M. Castro
    Manuel J. Marín-Jiménez
    Nicolás Guil
    Nicolás Pérez de la Blanca
    Neural Computing and Applications, 2020, 32 : 14173 - 14193
  • [23] When CNN meet with ViT: decision-level feature fusion for camouflaged object detection
    Yue, Guowen
    Jiao, Ge
    Li, Chen
    Xiang, Jiahao
    VISUAL COMPUTER, 2024, : 3957 - 3972
  • [24] A feature-level fusion based improved multimodal biometric recognition system using ear and profile face
    Sarangi, Partha Pratim
    Nayak, Deepak Ranjan
    Panda, Madhumita
    Majhi, Banshidhar
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 13 (04) : 1867 - 1898
  • [25] Multibiometric Cryptosystems Based on Feature-Level Fusion
    Nagar, Abhishek
    Nandakumar, Karthik
    Jain, Anil K.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2012, 7 (01) : 255 - 268
  • [26] Gait Activity Classification From Feature-Level Sensor Fusion of Multi-Modality Systems
    Yunas, Syed U.
    Ozanyan, Krikor B.
    IEEE SENSORS JOURNAL, 2021, 21 (04) : 4801 - 4810
  • [27] Real-time Action Recognition by Feature-level Fusion of Depth and Inertial Sensor
    Li, Yi
    Cheng, Jun
    Ji, Xiaopeng
    Feng, Wei
    Tao, Dapeng
    2017 IEEE INTERNATIONAL CONFERENCE ON REAL-TIME COMPUTING AND ROBOTICS (RCAR), 2017, : 109 - 114
  • [28] Gait Recognition Based On the Feature Fusion
    Zhu Jinghong
    Fang Shuai
    Fang Jie
    Wang Yong
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 5449 - 5452
  • [29] Enhancing part-based gait recognition via ensemble learning and feature fusion
    Büşranur Yaprak
    Eyüp Gedikli
    Pattern Analysis and Applications, 2025, 28 (2)
  • [30] A Unified CNN-ViT Network with a Feature Distribution Strategy for Multi-modal Missing MRI Sequences Imputation
    Wang, Yulin
    Liu, Qian
    12TH ASIAN-PACIFIC CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING, VOL 1, APCMBE 2023, 2024, 103 : 238 - 244