Optimal lower bound on eigenvector overlaps for non-Hermitian random matrices

被引:3
|
作者
Cipolloni, Giorgio [1 ]
Erdos, Laszlo [2 ]
Henheik, Joscha [2 ]
Schroeder, Dominik [3 ]
机构
[1] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[2] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[3] Swiss Fed Inst Technol, Ramistr 101, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
Eigenvalue condition number; Non-Hermitian perturbation theory; Quantum unique ergodicity; QUANTUM UNIQUE ERGODICITY; STATISTICAL-MECHANICS; UNIVERSALITY; CHAOS;
D O I
10.1016/j.jfa.2024.110495
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider large non-Hermitian N x N matrices with an additive independent, identically distributed (i.i.d.) noise for each matrix elements. We show that already a small noise of variance 1/N completely thermalises the bulk singular vectors, in particular they satisfy the strong form of Quantum Unique Ergodicity (QUE) with an optimal speed of convergence. In physics terms, we thus extend the Eigenstate Thermalisation Hypothesis, formulated originally by Deutsch [34] and proven for Wigner matrices in [23], to arbitrary nonHermitian matrices with an i.i.d. noise. As a consequence we obtain an optimal lower bound on the diagonal overlaps of the corresponding non-Hermitian eigenvectors. This quantity, also known as the (square of the) eigenvalue condition number measuring the sensitivity of the eigenvalue to small perturbations, has notoriously escaped rigorous treatment beyond the explicitly computable Ginibre ensemble apart from the very recent upper bounds given in [7] and [45]. As a key tool, we develop a new systematic decomposition of general observables in random matrix theory that governs the size of products of resolvents with deterministic matrices in between. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:90
相关论文
共 50 条
  • [1] Eigenvector delocalization for non-Hermitian random matrices and applications
    Luh, Kyle
    O'Rourke, Sean
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (01) : 169 - 210
  • [2] Eigenvalue repulsion and eigenvector localization in sparse non-Hermitian random matrices
    Zhang, Grace H.
    Nelson, David R.
    PHYSICAL REVIEW E, 2019, 100 (05)
  • [3] Eigenvector correlations in non-Hermitian random matrix ensembles
    Mehlig, B.
    Chalker, J.T.
    Annalen der Physik (Leipzig), 1998, 7 (5-6): : 427 - 436
  • [4] Eigenvector correlations in non-Hermitian random matrix ensembles
    Mehlig, B
    Chalker, JT
    ANNALEN DER PHYSIK, 1998, 7 (5-6) : 427 - 436
  • [5] Eigenvector statistics in non-Hermitian random matrix ensembles
    Chalker, JT
    Mehlig, B
    PHYSICAL REVIEW LETTERS, 1998, 81 (16) : 3367 - 3370
  • [6] ON WORDS OF NON-HERMITIAN RANDOM MATRICES
    Dubach, Guillaume
    Peled, Yuval
    ANNALS OF PROBABILITY, 2021, 49 (04): : 1886 - 1916
  • [7] Towards non-Hermitian random Levy matrices
    Gudowska-Nowak, Ewa
    Jarosz, Andrzej
    Nowak, Maciej A.
    Papp, Gabor
    ACTA PHYSICA POLONICA B, 2007, 38 (13): : 4089 - 4104
  • [8] Resonances as eigenvalues of non-Hermitian Random Matrices
    Fyodorov, YV
    Sommers, HJ
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 287 - 289
  • [9] ON THE RIGHTMOST EIGENVALUE OF NON-HERMITIAN RANDOM MATRICES
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    Xu, Yuanyuan
    ANNALS OF PROBABILITY, 2023, 51 (06): : 2192 - 2242
  • [10] Functional CLT for non-Hermitian random matrices
    Erdos, Laszlo
    Ji, Hong Chang
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (04): : 2083 - 2105