Dielectric and Conductive Properties of ZnMoO4-TiO2: Exploring High-Temperature Performance and Application Potential

被引:3
作者
Kalingani, Subhangi [1 ]
Das, Satyaprakash Narayan [1 ]
Bhuyan, Satyanaryan [1 ]
机构
[1] Siksha O Anusandhan Deemed Be Univ, Fac Engn & Technol ITER, Dept Elect & Commun Engn, Bhubaneswar 751030, India
关键词
Ceramic composite; Dielectric constant; XRD analysis; SEM analysis; HUMIDITY SENSING PROPERTIES; IMPEDANCE SPECTROSCOPY; ELECTRICAL-CONDUCTION; FABRICATION;
D O I
10.1007/s13538-024-01609-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Considering ceramic engineering advances, this study explores ZnMoO4-TiO2 electronic composite synthesis. This is synthesized using a solid-state mixed oxide reaction technique. Sample is calcined at 780 degrees C and sintered at 810 degrees C. The X-ray diffraction pattern of the sample structure matches with the JCPDS reference codes 98-000-4862 and 98-002-2025. Ambient temperature SEM and EDAX reveal the material's structure and composition. Compound microstructure exhibits continuous grain dispersion and unique porosity. Dielectric, loss tangent, and conductivity were comprehensively analyzed from 30 to 450 degrees C and 1 kilohertz (kHz) to 1 megahertz (MHz). At temperatures above 300 degrees C, the dielectric constant increases. The activation energy for electrical conductivity exhibits a range of values, specifically from 0.82 to 1.92 eV at various frequencies, when the temperature increases from 400 to 450 degrees C. UV-visible spectroscopy determined the band gap energy of 3.12 eV, with absorption peaks at 205 and 390 nm. Based on these findings, ZnMoO4-TiO2 may be suitable for humidity sensors and other electrical and electronic devices.
引用
收藏
页数:13
相关论文
共 46 条
[1]  
Arularasu M. V., 2016, Sensing and Bio-Sensing Research, V11, P20, DOI [10.1016/j.sbsr.2016.08.006, 10.1016/j.sbsr.2016.08.006]
[2]   Recent trends of ceramic humidity sensors development: A review [J].
Blank, T. A. ;
Eksperiandova, L. P. ;
Belikov, K. N. .
SENSORS AND ACTUATORS B-CHEMICAL, 2016, 228 :416-442
[3]  
Bueno Paulo Roberto, 2006, Mat. Res., V9, P293
[4]   Recent progress in all-inorganic metal halide nanostructured perovskites: Materials design, optical properties, and application [J].
Cao, Lianzhen ;
Liu, Xia ;
Li, Yingde ;
Li, Xiusheng ;
Du, Lena ;
Chen, Shengyao ;
Zhao, Shenlong ;
Wang, Cong .
FRONTIERS OF PHYSICS, 2021, 16 (03)
[5]   RH Sensing by Means of TiO2 Nanoparticles: A Comparison among Different Sensing Techniques Based on Modeling and Chemical/Physical Interpretation [J].
Cappelli, Irene ;
Fort, Ada ;
Lo Grasso, Anna ;
Panzardi, Enza ;
Mugnaini, Marco ;
Vignoli, Valerio .
CHEMOSENSORS, 2020, 8 (04) :1-19
[6]  
Chang Y., 2023, Review on ceramic-based composite phase change materials: preparation, characterization and application, V254, DOI [10.1016/j.compositesb.2023.110584, DOI 10.1016/J.COMPOSITESB.2023.110584]
[7]   Polaron-mediated transport and relaxation phenomena in the lead zinc niobate (PZN) modified bismuth ferrite solid solution [J].
Chauhan, D. ;
Biswal, B. ;
Pradhan, S. K. ;
Bhuyan, S. ;
Das, S. N. .
INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 167
[8]   Dielectric and magnetic enhancements in BiFeO3-PbTiO3 solid solutions with La doping [J].
Cheng, Jinrong ;
Yu, Shengwen ;
Chen, Jianguo ;
Meng, Zhongyan ;
Cross, L. Eric .
APPLIED PHYSICS LETTERS, 2006, 89 (12)
[9]   Relaxor (Pb0.7Bi0.3)(Mg0.231Nb0.462Fe0.3)O3 electronic compound for magnetoelectric field sensor applications [J].
Das, S. N. .
JOURNAL OF APPLIED PHYSICS, 2020, 128 (11)
[10]   Capacitive, resistive and conducting characteristics of bismuth ferrite and lead magnesium niobate based relaxor electronic system [J].
Das, S. N. ;
Pradhan, S. K. ;
Bhuyan, S. ;
Choudhary, R. N. P. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (24) :18913-18928