Regenerated nanofibrous cellulose electrospun from ionic liquid: Tuning properties toward tissue engineering

被引:0
|
作者
Pauliukaityte, Ingrida [1 ]
Ciuzas, Darius [1 ,2 ]
Krugly, Edvinas [1 ]
Baniukaitiene, Odeta [3 ]
Bulota, Mindaugas [4 ]
Petrikaite, Vilma [2 ,5 ]
Martuzevicius, Dainius [1 ]
机构
[1] Kaunas Univ Technol, Dept Environm Technol, Kaunas, Lithuania
[2] Lithuanian Univ Hlth Sci, Lab Drug Targets Histopathol, Kaunas, Lithuania
[3] Kaunas Univ Technol, Dept Polymer Chem & Technol, Kaunas, Lithuania
[4] Kaunas Univ Technol, Natl Innovat & Entrepreneurship Ctr, Kaunas, Lithuania
[5] Vilnius Univ, Inst Biotechnol, Life Sci Ctr, Vilnius, Lithuania
关键词
cellulose; in vitro cell culture; ionic liquid; nanofibres; tissue engineering; wet electrospinning; DISSOLUTION; FIBERS; MORPHOLOGY;
D O I
10.1002/jbm.a.37798
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Regenerated fibrous cellulose possesses a unique set of properties, including biocompatibility, biodegradability, and high surface area potential, but its applications in the biomedical sector have not been sufficiently explored. In this study, nanofibrous cellulose matrices were fabricated via a wet-electrospinning process using a binary system of the solvent ionic liquid (IL) 1-butyl-3-methylimidazolium acetate (BMIMAc) and co-solvent dimethyl sulfoxide (DMSO). The morphology of the matrices was controlled by varying the ratio of BMIMAc versus DMSO in the solvent system. The most effective ratio of 1:1 produced smooth fibers with diameters ranging from 200 to 400 nm. The nanofibrous cellulose matrix showed no cytotoxicity when tested on mouse fibroblast L929 cells whose viability remained above 95%. Human triple-negative breast cancer MDA-MB-231 cells also exhibited high viability even after 7 days of seeding and were able to penetrate deeper layers of the matrix, indicating high biocompatibility. These properties of nanofibrous cellulose demonstrate its potential for tissue engineering and cell culture applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] An investigation into influence of acetylated cellulose nanofibers on properties of PCL/Gelatin electrospun nanofibrous scaffold for soft tissue engineering
    Goudarzi, Zahra Moazzami
    Behzad, Tayebeh
    Ghasemi-Mobarakeh, Laleh
    Kharaziha, Mahshid
    POLYMER, 2021, 213
  • [22] Fabrication of Smooth Electrospun Nanofibrous Gelatin Mat for Potential Application in Tissue Engineering
    Joy, Jincy
    Gupta, Punit
    Ray, Alok R.
    Gupta, Amlan
    Sharma, Anupama
    Sharma, Dipika
    Gupta, Bhuvanesh
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2015, 64 (10) : 509 - 518
  • [23] Electrospun biodegradable nanofibrous mats for tissue engineering
    Ndreu, Albana
    Nikkola, Lila
    Ylikauppila, Hanna
    Ashammakhi, Nureddin
    Hasirci, Vasif
    NANOMEDICINE, 2008, 3 (01) : 45 - 60
  • [24] Hydrophilic Surface Functionalization of Electrospun Nanofibrous Scaffolds in Tissue Engineering
    Niemczyk-Soczynska, Beata
    Gradys, Arkadiusz
    Sajkiewicz, Pawel
    POLYMERS, 2020, 12 (11) : 1 - 20
  • [25] Electrospun Poly(ε-caprolactone)/Nanoclay Nanofibrous Mats for Tissue Engineering
    Nouri, Mahdi
    Mokhtari, Javad
    Rostamloo, Mahsa
    FIBERS AND POLYMERS, 2013, 14 (06) : 957 - 964
  • [26] Electrospun Nanofibrous Polycaprolactone Scaffolds for Tissue Engineering of Annulus Fibrosus
    Koepsell, Laura
    Zhang, Lifeng
    Neufeld, Daniel
    Fong, Hao
    Deng, Ying
    MACROMOLECULAR BIOSCIENCE, 2011, 11 (03) : 391 - 399
  • [27] Biomimetic electrospun nanofibrous structures for tissue engineering
    Wang, Xianfeng
    Ding, Bin
    Li, Bingyun
    MATERIALS TODAY, 2013, 16 (06) : 229 - 241
  • [28] Crystalline characteristics of cellulose fiber and film regenerated from ionic liquid solution
    Sun, Liangfeng
    Chen, Jonathan Y.
    Jiang, Wei
    Lynch, Vincent
    CARBOHYDRATE POLYMERS, 2015, 118 : 150 - 155
  • [29] Protein encapsulated in electrospun nanofibrous scaffolds for tissue engineering applications
    Norouzi, Mohammad
    Soleimani, Masoud
    Shabani, Iman
    Atyabi, Fatemeh
    Ahvaz, Hana H.
    Rashidi, Abusaeed
    POLYMER INTERNATIONAL, 2013, 62 (08) : 1250 - 1256
  • [30] Structure and Mechanical Properties of Regenerated Cellulose Fibers Wet-Spun from Ionic Liquid/Cosolvent Systems
    Young Jae Lee
    Sung Jun Lee
    Sang Won Jeong
    Hyun-chul Kim
    Tae Hwan Oh
    Se Geun Lee
    Fibers and Polymers, 2019, 20 : 501 - 511