A Traffic Flow Data Quality Repair Model Based on Spatiotemporal Correlation

被引:0
|
作者
Li, Yan [1 ]
Xu, Liangjie [1 ]
Qin, Wendie [1 ]
Xie, Cong [2 ]
Ji, Chuanwang [3 ]
机构
[1] Wuhan Univ Technol, Sch Transportat & Logist Engn, Wuhan 430000, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Automot & Traff Engn, Wuhan 430000, Peoples R China
[3] Dalian Univ Technol, Sch Energy & Power Engn, Dalian 116024, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Data models; Spatiotemporal phenomena; Feature extraction; Predictive models; Correlation; Imputation; Data mining; Genetic algorithms; Telecommunication traffic; Long short term memory; Traffic data quality repair; cylinder multi-granularity input; improved genetic algorithm; Bi-LSTM; deep forest model; GENETIC ALGORITHM; IMPUTATION; REGRESSION; FOREST;
D O I
10.1109/ACCESS.2024.3439998
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To address the data quality issues caused by environmental changes and other factors, this paper proposes a method for repairing missing traffic flow data from loop detectors, leveraging the spatiotemporal characteristics of traffic flow. Then, a Bi-directional Long Short-Term Memory with an Improved Genetic Algorithm (IGA-Bi-LSTM) model and an improved Deep Forest (DF) traffic flow data imputation model are constructed. By combining the advantages of these two models, the improved DF model is used to extract spatiotemporal characteristics and impute sequential data to obtain temporal features. These features are coupled with spatiotemporal characteristics and input into the IGA-Bi-LSTM neural network to establish the Spatiotemporal Imputation Model (STIM), ultimately enhancing data quality. To verify the reliability of the results, the experimental data used the PORTAL public dataset and compared the performance of Historical Average (HA), Autoregressive Integrated Moving Average (ARIMA) model, Random Forest (RF), and Bi-directional Long Short-Term Memory with Genetic Algorithm (GA-Bi-LSTM) models. The results indicate that the STIM model has more advantages compared to other methods. Finally, traffic flow theory is used for validation, and the results confirm that the imputed traffic flow data are reliable, demonstrating the significant importance of this research for traffic flow data analysis.
引用
收藏
页码:116816 / 116828
页数:13
相关论文
共 50 条
  • [41] A Flow Feedback Traffic Prediction Based on Visual Quantified Features
    Chen, Jing
    Xu, Mengqi
    Xu, Wenqiang
    Li, Daping
    Peng, Weimin
    Xu, Haitao
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (09) : 10067 - 10075
  • [42] Multivariate Correlation Matrix-Based Deep Learning Model With Enhanced Heuristic Optimization for Short-Term Traffic Forecasting
    Zhang, Shuai
    Zhu, Kun
    Zhang, Wenyu
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (03) : 2847 - 2858
  • [43] Dynamic Optimization Long Short-Term Memory Model Based on Data Preprocessing for Short-Term Traffic Flow Prediction
    Zhang, Yang
    Xin, Dongrong
    IEEE ACCESS, 2020, 8 : 91510 - 91520
  • [44] A Multi-Layer Model Based on Transformer and Deep Learning for Traffic Flow Prediction
    Hu, He-Xuan
    Hu, Qiang
    Tan, Guoping
    Zhang, Ye
    Lin, Zhen-Zhou
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (01) : 443 - 451
  • [45] A Repair Method for Missing Traffic Data Based on FCM, Optimized by the Twice Grid Optimization and Sparrow Search Algorithms
    Li, Pengcheng
    Dong, Baotian
    Li, Sixian
    Chu, Rusi
    SENSORS, 2022, 22 (11)
  • [46] Dynamic Graph Convolutional Recurrent Network With Spatiotemporal Category Information Embedding for Traffic Flow Prediction
    Zhu, Guodong
    Niu, Yunyun
    Du, Songzhi
    Wang, Pengcheng
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (24): : 39473 - 39486
  • [47] Tensor based missing traffic data completion with spatial-temporal correlation
    Ran, Bin
    Tan, Huachun
    Wu, Yuankai
    Jin, Peter J.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 446 : 54 - 63
  • [48] An Anomaly Detection Algorithm for Spatiotemporal Data Based on Attribute Correlation
    Chen, Aiguo
    Chen, Yuanfan
    Lu, Guoming
    Zhang, Lizong
    Luo, Jiacheng
    ADVANCED MULTIMEDIA AND UBIQUITOUS ENGINEERING, MUE/FUTURETECH 2018, 2019, 518 : 83 - 89
  • [49] A Data Fusion Powered Bi-Directional Long Short Term Memory Model for Predicting Multi-Lane Short Term Traffic Flow
    Xing, Lumin
    Liu, Wenjian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 16810 - 16819
  • [50] Self-Supervised Spatiotemporal Imputation Model for Highly Sparse Chl-a Data via Fusing Multisource Satellite Data
    Wang, Shuyu
    Li, Wengen
    Guan, Jihong
    Liu, Xiwei
    Zhang, Yichao
    Zhou, Shuigeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62