Perceptual error optimization for Monte Carlo animation rendering

被引:2
作者
Korac, Misa [1 ]
Salauen, Corentin [2 ]
Georgiev, Iliyan [3 ]
Grittmann, Pascal [4 ]
Slusallek, Philipp [1 ]
Myszkowski, Karol [2 ]
Singh, Gurprit [2 ]
机构
[1] Saarland Univ, DFKI, Saarbrucken, Germany
[2] Max Planck Inst Informat, Saarbrucken, Germany
[3] Adobe, London, England
[4] Saarland Univ, Saarbrucken, Germany
来源
PROCEEDINGS OF THE SIGGRAPH ASIA 2023 CONFERENCE PAPERS | 2023年
关键词
Monte Carlo rendering; stochastic sampling; blue noise; SENSITIVITY; MOTION;
D O I
10.1145/3610548.3618146
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Independently estimating pixel values in Monte Carlo rendering results in a perceptually sub-optimal white-noise distribution of error in image space. Recent works have shown that perceptual fidelity can be improved significantly by distributing pixel error as blue noise instead. Most such works have focused on static images, ignoring the temporal perceptual effects of animation display. We extend prior formulations to simultaneously consider the spatial and temporal domains, and perform an analysis to motivate a perceptually better spatio-temporal error distribution. We then propose a practical error optimization algorithm for spatio-temporal rendering and demonstrate its effectiveness in various configurations.
引用
收藏
页数:10
相关论文
共 41 条