Engineering the xylose metabolism of Saccharomyces cerevisiae for ethanol and single cell protein bioconversion

被引:4
作者
Huang, Mengtian [1 ,2 ,3 ]
Jin, Zhuocheng [1 ,2 ]
Ni, Hong [1 ,2 ]
Zhang, Peining [1 ,2 ]
Li, Huanan [1 ,2 ]
Liu, Jiashu [1 ,2 ]
Weng, Chengcheng [1 ]
Jiang, Zhengbing [1 ,2 ]
机构
[1] Hubei Univ, State Key Lab Biocatalysis & Enzyme Engn, Wuhan 430062, Peoples R China
[2] Hubei Univ, Sch Life Sci, Wuhan 430062, Peoples R China
[3] Hubei Engn Univ, Coll Life Sci & Technol, Xiaogan 432000, Peoples R China
关键词
Xylose isomerase; Promoter; Glucose/xylose co-utilization; Saccharomyces cerevisiae; CO-FERMENTATION; S.-CEREVISIAE; EXPRESSION; ISOMERASE; GLUCOSE; PRETREATMENT; KINETICS; PROMOTER; IMPACT; GENES;
D O I
10.1016/j.biombioe.2024.107372
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Xylose isomerase (XI) pathway has been widely employed to enable Saccharomyces cerevisiae to convert xylose and glucose into commercially feasible lignocellulosic ethanol products. Nevertheless, studies about the effect of different promoters to the expression of xylA are lacking. Therefore, five strains with ADH1, GAPDH, PDC1, PGK, TEF1 promoters were constructed. Among them, S. cerevisiae INVSc1/pHM368-P-ADH1-xylA generated with xylA driven by ADH1 promoter displayed the highest xylose utilization rate (approximately 19.98 %) using xylose as the only carbon source. With 4 g/L glucose and 10 g/L xylose as the carbon sources, the xylose utilization rate was 60.04 %. Moreover, the utilization rate increased to 64.04 % with fermentation temperature elevated from 28 degrees C to 30 degrees C and reached 83.09 % with peptone and yeast extract as the nitrogen sources. The ethanol titer reached 1.74 g/L with a yield of 0.38 g/g sugar under this condition. In Comparison with direct fermentation, the single cell protein (SCP) was 1.27-fold higher during aerobic fed-batch fermentation. Furthermore, INVSc1/pHM368-P-ADH1-xylA attains high ethanol productivities and yields by converting glucose and xylose from non-detoxified bagasse hydrolysates as carbon sources. The results extend our understanding of the xylose metabolism of S. cerevisiae and provide a platform for biomass conversion to ethanol and SCP, hence paving the way for the development of a more economical and sustainable approach to co-fermentation performance and capabilities for future engineering.
引用
收藏
页数:11
相关论文
共 48 条
[1]   GAL promoter-driven heterologous gene expression in Saccharomyces cerevisiae Δgal80 strain at anaerobic alcoholic fermentation [J].
Ahn, Jungoh ;
Park, Kyung-Min ;
Lee, Hongweon ;
Son, Yeo-Jin ;
Choi, Eui-Sung .
FEMS YEAST RESEARCH, 2013, 13 (01) :140-142
[2]   Development of an environmental-benign process for efficient pretreatment and saccharification of Saccharum biomasses for bioethanol production [J].
Bala, Anju ;
Singh, Bijender .
RENEWABLE ENERGY, 2019, 130 :12-24
[3]   Xylose isomerase from Piromyces sp. E2 is a promiscuous enzyme with epimerase activity [J].
Barreto, Matheus Quintana ;
Garbelotti, Carolina Victal ;
Soares, Jessica de Moura ;
Grandis, Adriana ;
Buckeridge, Marcos Silveira ;
Leone, Francisco Assis ;
Ward, Richard John .
ENZYME AND MICROBIAL TECHNOLOGY, 2023, 166
[4]   Expression of a high sweetness and heat-resistant mutant of sweet-tasting protein, monellin, in Pichia pastoris with a constitutive GAPDH promoter and modified N-terminus [J].
Cai, Chenggu ;
Li, Lei ;
Lu, Nan ;
Zheng, Weiwei ;
Yang, Liu ;
Liu, Bo .
BIOTECHNOLOGY LETTERS, 2016, 38 (11) :1941-1946
[5]   Big data mining, rational modification, and ancestral sequence reconstruction inferred multiple xylose isomerases for biorefinery [J].
Chen, Sitong ;
Xu, Zhaoxian ;
Ding, Boning ;
Zhang, Yuwei ;
Liu, Shuangmei ;
Cai, Chenggu ;
Li, Muzi ;
Dale, Bruce E. ;
Jin, Mingjie .
SCIENCE ADVANCES, 2023, 9 (05)
[6]   Fermentation of D-xylose to Ethanol by Saccharomyces cerevisiae CAT-1 Recombinant Strains [J].
Coimbra, Lucia ;
Malan, Karen ;
Fagundez, Alejandra ;
Guigou, Mairan ;
Lareo, Claudia ;
Fernandez, Belen ;
Pratto, Martin ;
Batista, Silvia .
BIOENERGY RESEARCH, 2023, 16 (02) :1001-1012
[7]   Valorisation of wine wastes by de novo biosynthesis of resveratrol using a recombinant xylose-consuming industrial Saccharomyces cerevisiae strain [J].
Costa, Carlos E. ;
Romani, Aloia ;
Moller-Hansen, Iben ;
Teixeira, Jose A. ;
Borodina, Irina ;
Domingues, Lucilia .
GREEN CHEMISTRY, 2022, 24 (23) :9128-9142
[8]   Physiological characterization of thermotolerant yeast for cellulosic ethanol production [J].
Costa, Daniela A. ;
de Souza, Carlos J. A. ;
Costa, Patricia S. ;
Rodrigues, Marina Q. R. B. ;
dos Santos, Ancely F. ;
Lopes, Mariana R. ;
Genier, Hugo L. A. ;
Silveira, Wendel B. ;
Fietto, Luciano G. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (08) :3829-3840
[9]   Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways [J].
Cunha, Joana T. ;
Soares, Pedro O. ;
Romani, Aloia ;
Thevelein, Johan M. ;
Domingues, Lucilia .
BIOTECHNOLOGY FOR BIOFUELS, 2019, 12 (1)
[10]   Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products [J].
De Bhowmick, Goldy ;
Sarmah, Ajit K. ;
Sen, Ramkrishna .
BIORESOURCE TECHNOLOGY, 2018, 247 :1144-1154