AdpSTGCN: Adaptive spatial-temporal graph convolutional network for traffic forecasting

被引:3
|
作者
Zhang, Xudong [1 ]
Chen, Xuewen [1 ]
Tang, Haina [1 ]
Wu, Yulei [2 ]
Shen, Hanji [3 ]
Li, Jun [3 ]
机构
[1] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[2] Univ Bristol, Sch Elect Elect & Mech Engn, Bristol BS8 1UB, England
[3] Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100083, Peoples R China
关键词
Traffic forecasting; Graph structure learning; Adaptive graph convolution; Spatial-temporal graph modeling;
D O I
10.1016/j.knosys.2024.112295
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic flow forecasting plays a crucial role in applications such as intelligent transportation systems. Despite significant research in this field, the current methods have limitations that hinder the realization of highly accurate predictions. Existing GCN-based approaches typically rely on a definite graph structure derived from a physical topology or learned from node features, which is insufficient for building intricate spatial relationships among nodes. To address this challenge, we propose an adaptive spatial-temporal graph convolutional network for traffic forecasting. Our approach exploits a multi-head attention mechanism to construct multi-view feature graphs. We then introduce an adaptive graph convolution method to dynamically aggregate and propagate information from both the topology graph and multi-view feature graphs, which are capable of capturing complex spatial correlations across diverse proximity ranges. Furthermore, we designed a cascaded structural framework that combines temporal information with node features using gated dilated causal convolution to ensure the integrated modeling of spatial-temporal dynamics in traffic flow. Experiments on real-world datasets demonstrate that our proposed method outperforms the current mainstream methods, achieving better performance in traffic flow forecasting. The code is available at https://github.com/dhxdla/AdpSTGCN.git.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Sampling Spatial-Temporal Attention Network for Traffic Forecasting
    Chen, Mao
    Xu, Yi
    Han, Liangzhe
    Sun, Leilei
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, KSEM 2023, 2023, 14118 : 121 - 136
  • [22] Multi-view Cascading Spatial-Temporal Graph Neural Network for Traffic Flow Forecasting
    Liu, Zibo
    Fu, Kaiqun
    Liu, Xiaotong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT II, 2022, 13530 : 605 - 616
  • [23] Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for Traffic Forecasting
    Guo, Shengnan
    Lin, Youfang
    Wan, Huaiyu
    Li, Xiucheng
    Cong, Gao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) : 5415 - 5428
  • [24] Probabilistic spatio-temporal graph convolutional network for traffic forecasting
    Karim, Atkia Akila
    Nower, Naushin
    APPLIED INTELLIGENCE, 2024, : 7070 - 7085
  • [25] STGAFormer: Spatial-temporal Gated Attention Transformer based Graph Neural Network for traffic flow forecasting
    Geng, Zili
    Xu, Jie
    Wu, Rongsen
    Zhao, Changming
    Wang, Jin
    Li, Yunji
    Zhang, Chenlin
    INFORMATION FUSION, 2024, 105
  • [26] Multi-scale convolutional networks for traffic forecasting with spatial-temporal attention
    Li, Zilong
    Ren, Qianqian
    Chen, Long
    Li, Jinbao
    Li, Xiaokun
    PATTERN RECOGNITION LETTERS, 2022, 164 : 53 - 59
  • [27] Transformer network with decoupled spatial-temporal embedding for traffic flow forecasting
    Sun, Wei
    Cheng, Rongzhang
    Jiao, Yingqi
    Gao, Junbo
    Zheng, Zhedian
    Lu, Nan
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30148 - 30168
  • [28] Traffic Forecasting using Temporal Line Graph Convolutional Network: Case Study
    Ramadan, Abdelrahman
    Elbery, Ahmed
    Zorba, Nizar
    Hassanein, Hossam S.
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [29] Spatio-temporal fusion graph convolutional network for traffic flow forecasting
    Ma, Ying
    Lou, Haijie
    Yan, Ming
    Sun, Fanghui
    Li, Guoqi
    INFORMATION FUSION, 2024, 104
  • [30] Adaptive Spatio-temporal Graph Neural Network for traffic forecasting
    Ta, Xuxiang
    Liu, Zihan
    Hu, Xiao
    Yu, Le
    Sun, Leilei
    Du, Bowen
    KNOWLEDGE-BASED SYSTEMS, 2022, 242