A volumetric approach to Monge's optimal transport on surfaces

被引:0
|
作者
Tsai, Richard [1 ]
Turnquist, Axel G. R. [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; BOUNDARY-VALUE PROBLEM; NUMERICAL-SOLUTION; IRREGULAR DOMAINS; DESIGN; INTEGRATION; REGULARITY; LENSES; MAPS;
D O I
10.1016/j.jcp.2024.113352
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a volumetric formulation for computing the Optimal Transport problem defined on surfaces in R-3, found in disciplines like optics, computer graphics, and computational methodologies. Instead of directly tackling the original problem on the surface, we define a new Optimal Transport problem on a thin tubular region, T-epsilon, adjacent to the surface. This extension offers enhanced flexibility and simplicity for numerical discretization on Cartesian grids. The Optimal Transport mapping and potential function computed on T-epsilon are consistent with the original problem on surfaces. We demonstrate that, with the proposed volumetric approach, it is possible to use simple and straightforward numerical methods to solve Optimal Transport for Gamma = S-2 and the 2-torus.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Dynamical Optimal Transport on Discrete Surfaces
    Lavenant, Hugo
    Claici, Sebastian
    Chien, Edward
    Solomon, Justi N.
    ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (06):
  • [22] Dynamical optimal transport on discrete surfaces
    Lavenant H.
    Claici S.
    Chien E.
    Solomon J.
    2018, Association for Computing Machinery, 2 Penn Plaza, Suite 701, New York, NY 10121-0701, United States (37):
  • [23] Dynamical Optimal Transport on Discrete Surfaces
    Lavenant, Hugo
    Claici, Sebastian
    Chien, Edward
    Solomon, Justin
    SIGGRAPH ASIA'18: SIGGRAPH ASIA 2018 TECHNICAL PAPERS, 2018,
  • [24] The Sinkhorn algorithm, parabolic optimal transport and geometric Monge–Ampère equations
    Robert J. Berman
    Numerische Mathematik, 2020, 145 : 771 - 836
  • [25] A GENERAL CONDITION FOR MONGE SOLUTIONS IN THE MULTI-MARGINAL OPTIMAL TRANSPORT PROBLEM
    Kim, Young-Heon
    Pass, Brendan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (02) : 1538 - 1550
  • [26] Caracterization of an optimal solution to Monge-Kantorovitch's problem
    Abdellaoui, T
    Heinich, H
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1999, 127 (03): : 429 - 443
  • [27] Uniqueness and transport density in Monge's mass transportation problem
    Mikhail Feldman
    Robert J. McCann
    Calculus of Variations and Partial Differential Equations, 2002, 15 : 81 - 113
  • [28] Uniqueness and transport density in Monge's mass transportation problem
    Feldman, M
    McCann, RJ
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2002, 15 (01) : 81 - 113
  • [29] Green's function approach to transport in quantum wires with rough surfaces
    Sheng, L
    Xing, DY
    Wang, ZD
    Dong, JM
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1996, 100 (04): : 567 - 574
  • [30] Monge solutions and uniqueness in multi-marginal optimal transport via graph theory
    Pass, Brendan
    Vargas-Jimenez, Adolfo
    ADVANCES IN MATHEMATICS, 2023, 428