Organic municipal solid waste derived hydrogen production through supercritical water gasification process configured with K2CO3/SiO2: Performance study

被引:7
作者
Soudagar, Manzoore Elahi M. [1 ,2 ,3 ]
Upadhyay, Viyat Varun [4 ]
Bhooshanam, N. Naga [5 ]
Singh, Ravindra Pratap [4 ]
Rabadiya, Dhaval [6 ]
Venkatesh, R. [7 ]
Mohanavel, Vinayagam [8 ,9 ,10 ]
Alotaibi, Majed A. [11 ]
Seikh, A. H. [12 ]
机构
[1] Lishui Univ, Coll Engn, Lishui 323000, Zhejiang, Peoples R China
[2] Lishui Univ, Lishui Ind Technol Res Inst, Lishui 323000, Peoples R China
[3] Chitkara Univ, Ctr Res Impact & Outcome, Rajpura 140417, Punjab, India
[4] GLA Univ, Dept Mech Engn, Mathura 281406, Uttar Pradesh, India
[5] Aditya Univ, Dept Mech Engn, Surampalem 533437, Andhra Pradesh, India
[6] Parul Univ, Fac Management Studies, PO Limda, Vadodara 391760, Gujarat, India
[7] Saveetha Univ, Saveetha Inst Med & Tech Sci SIMATS, Saveetha Sch Engn, Dept Mech Engn, Chennai 602105, Tamilnadu, India
[8] Bharath Inst Higher Educ & Res, Ctr Mat Engn & Regenerat Med, Chennai 600073, Tamil Nadu, India
[9] Graphic Era Hill Univ, Dept Mech Engn, Dehra Dun 248002, Uttarakhand, India
[10] Graphic Era Univ, Dept Mech Engn, Dehra Dun 248002, Uttarakhand, India
[11] King Saud Univ, Coll Engn, Dept Elect Engn, POB 2455, Riyadh 11451, Saudi Arabia
[12] King Saud Univ, Coll Engn, Dept Mech Engn, Riyadh 11421, Saudi Arabia
关键词
Gasification; Hydrogen; K (2) CO (3) /SiO 2 Catalyst; Processing time; Temperature; Properties; SEWAGE-SLUDGE; CHEMICAL ACTIVATION; PURIFICATION; PARAMETERS; PYROLYSIS; CARBON; MODEL;
D O I
10.1016/j.biombioe.2024.107379
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Cities worldwide face a significant public health and environmental challenge in handling municipal solid waste (MSW). This research exposed an effective utilization of MSW as the source for hydrogen production via a supercritical water gasification process under 450-650 degrees C at 15-45 min processing time. The impacts of gasification temperature and processing time on the functional properties of hydrogen production are studied. Its results are compared to identify the optimum processing temperature and processing time to adopt the system. Integrating 3 wt% silicon dioxide (SiO2) nanoparticles/3 wt% of potassium carbonate (K2CO3) enhances hydrogen production by increasing the catalyst's surface area and improving the stability of active sites, leading to more efficient gasification reactions. Increasing the gasification temperature from 450 to 650 degrees C significantly raises the hydrogen molar fraction and gas yield with peak gasification efficiency (GE) and hydrogen efficiency (HE) values. The gasifier functioned with catalyst (3 wt% K2CO3/SiO2) under 650 degrees C gasification temperature and 45min gasification time influenced better output responses like improved hydrogen gas yield of 63.7 mol/kg, higher gasification efficiency of 59.8 %, better hydrogen efficiency (63.4 %) and increased carbon conversion efficiency of 63.4 and 42.5 % respectively.
引用
收藏
页数:9
相关论文
共 35 条
  • [1] Agro-industrial waste to solid biofuel through hydrothermal carbonization
    Basso, Daniele
    Patuzzi, Francesco
    Castello, Daniele
    Baratieri, Marco
    Rada, Elena Cristina
    Weiss-Hortala, Elsa
    Fiori, Luca
    [J]. WASTE MANAGEMENT, 2016, 47 : 114 - 121
  • [2] Catalytic supercritical water gasification of eucalyptus wood chips in a batch reactor
    Borges, A. C. P.
    Onwudili, J. A.
    Andrade, H. M. C.
    Alves, C. T.
    Ingram, A.
    Vieira de Melo, S. A. B.
    Torres, E. A.
    [J]. FUEL, 2019, 255
  • [3] Supercritical water gasification of black liquor with wheat straw as the supplementary energy resource
    Cao, Changqing
    Zhang, Yi
    Li, Linhu
    Wei, Wenwen
    Wang, Gaoyun
    Bian, Ce
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (30) : 15737 - 15745
  • [4] A hot syngas purification system integrated with downdraft gasification of municipal solid waste
    Chan, Wei Ping
    Veksha, Andrei
    Lei, Junxi
    Oh, Wen-Da
    Dou, Xiaomin
    Giannis, Apostolos
    Lisak, Grzegorz
    Lim, Teik-Thye
    [J]. APPLIED ENERGY, 2019, 237 : 227 - 240
  • [5] Chanthakett A., 2021, Bioenergy Resources and Technologies, P219, DOI [10.1016/B978-0-12-822525-7.00017-2, DOI 10.1016/B978-0-12-822525-7.00017-2]
  • [6] Performance assessment of gasification reactors for sustainable management of municipal solid waste
    Chanthakett, Apinya
    Arif, M. T.
    Khan, M. M. K.
    Oo, Aman M. T.
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 291
  • [7] Uncertainty analysis in acoustics: perturbation methods and isogeometric boundary element methods
    Chen, Leilei
    Lian, Haojie
    Huo, Ruijin
    Du, Jing
    Liu, Weisong
    Meng, Zhuxuan
    Bordas, Stephane P. A.
    [J]. ENGINEERING WITH COMPUTERS, 2024, 40 (06) : 3875 - 3900
  • [8] Catalytic gasification of sewage sludge in near and supercritical water with different catalysts
    Chen, Yunan
    Yi, Lei
    Li, Sha
    Yin, Jiarong
    Jin, Hui
    [J]. CHEMICAL ENGINEERING JOURNAL, 2020, 388
  • [9] Performance characteristics of a pilot-scale biomass gasifier using oxygen-enriched air and steam
    Cuong Van Huynh
    Kong, Song-Charng
    [J]. FUEL, 2013, 103 : 987 - 996
  • [10] A study on experimental characteristic of co-pyrolysis of municipal solid waste and paper mill sludge with additives
    Fang, Shiwen
    Yu, Zhaosheng
    Lin, Yan
    Lin, Yousheng
    Fan, Yunlong
    Liao, Yanfen
    Ma, Xiaoqian
    [J]. APPLIED THERMAL ENGINEERING, 2017, 111 : 292 - 300