Selective Recycling of Spent Lithium-Ion Batteries Enables Toward Aqueous Zn-Ion Batteries Cathode

被引:2
|
作者
Lv, Xiao Wei [1 ]
Lin, Jiao [1 ]
Zhang, Xiao Dong [1 ]
Huang, Qing Rong [1 ]
Sun, Xuan [1 ,2 ]
Fan, Er Sha [1 ,2 ]
Chen, Ren Jie [1 ,2 ,3 ]
Wu, Feng [1 ,2 ,3 ]
Li, Li [1 ,2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Adv Technol Res Inst, Jinan 250300, Peoples R China
[3] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
aqueous Zn-ion batteries; Mn2O3; cathode; photoexcitation; selective recycling; spent lithium-ion batteries; ORGANIC-ACIDS; CITRIC-ACID; METAL-IONS; RECOVERY; COBALT; MANGANESE; NICKEL;
D O I
10.1002/aenm.202402560
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Effective selective recycling of spent lithium-ion batteries (S-LIBs) and giving recycled products a "second life" are crucial for advancing energy supply circularity, environmental and economic sustainability development. However, separating metal compounds with similar charge differences requires substantial energy, water, and chemical inputs. Herein, an innovative strategy is present for selective recycling S-LIBs by photoexcitation inspired by the Hard Soft Acid Base (HSAB) principle. Theoretical calculations and experimental results show that photoexcitation drives charge transfer and modulates subtle charge density differences among metal components, thereby enhancing their solubility disparity and facilitating metal separation. Remarkably, the photoexcitation-induced metal separation factor reaches 46900 and the metal recovery efficiency approaches 100%, representing a significant improvement over non-photoexcitation separation with a separation factor of non-photoexcitation of merely 2.7. Through techno-economic analysis, the viability of photoexcitation selective recycling technology has been confirmed as an eco-friendly and economical approach for battery recycling. Furthermore, high-value reuse of recovered Mn components is implemented. The Recycled Mn components are treated by calcination to obtain porous, defect-rich Mn2O3, which showed a specific capacity of 613 mAh g(-1) at 0.1 A g(-1)) in aqueous Zn-ion batteries (AZIBs). This work provides fresh insight into recycling S-LIBs and moving toward more sustainable storage technologies.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Selective extraction of lithium from spent lithium-ion batteries
    Vieceli, N.
    Margarido, F.
    Pereira, M. F. C.
    Durao, F.
    Guimaraes, C.
    Nogueira, C. A.
    WASTES - SOLUTIONS, TREATMENTS AND OPPORTUNITIES II, 2018, : 251 - 257
  • [32] Progresses in Sustainable Recycling Technology of Spent Lithium-Ion Batteries
    Du, Kaidi
    Ang, Edison Huixiang
    Wu, Xinglong
    Liu, Yichun
    ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (04) : 1012 - 1036
  • [33] Recent progress in disposal and recycling of spent lithium-ion batteries
    Zhang X.
    Wang Y.
    Liu Y.
    Wu F.
    Li L.
    Chen R.
    Wang, Yangyang (34989298@qq.com), 1600, Materials China (35): : 4026 - 4032
  • [34] A review of direct recycling methods for spent lithium-ion batteries
    Cao, Yang
    Li, Junfeng
    Ji, Haocheng
    Wei, Xijun
    Zhou, Guangmin
    Cheng, Hui -Ming
    ENERGY STORAGE MATERIALS, 2024, 70
  • [35] Recycling of spent lithium-ion batteries via sulfidation shock
    Zhang, Beikai
    Wang, Lanbin
    Song, Duanmei
    Wu, Jing
    Yu, Jiadong
    Li, Jinhui
    CHEMICAL ENGINEERING JOURNAL, 2025, 505
  • [36] Enabling Future Closed-Loop Recycling of Spent Lithium-Ion Batteries: Direct Cathode Regeneration
    Yang, Tingzhou
    Luo, Dan
    Yu, Aiping
    Chen, Zhongwei
    ADVANCED MATERIALS, 2023, 35 (36)
  • [37] Current status and outlook of recycling spent lithium-ion batteries
    Lan, Yuanqi
    Tan, Li
    Wu, Nanzhong
    Wen, Jianfeng
    Yao, Wenjiao
    Tang, Yongbing
    Cheng, Hui-Ming
    JOURNAL OF ENERGY STORAGE, 2025, 110
  • [38] Progress in the sustainable recycling of spent lithium-ion batteries
    Fan, Min
    Chang, Xin
    Meng, Qinghai
    Wan, Li-Jun
    Guo, Yu-Guo
    SUSMAT, 2021, 1 (02): : 241 - 254
  • [39] Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching
    Li, Li
    Bian, Yifan
    Zhang, Xiaoxiao
    Guan, Yibiao
    Fan, Ersha
    Wu, Feng
    Chen, Renjie
    WASTE MANAGEMENT, 2018, 71 : 362 - 371
  • [40] Comprehensive review on recycling of spent lithium-ion batteries
    Chandran, V.
    Ghosh, Aritra
    Patil, Chandrashekhar K.
    Mohanavel, V.
    Priya, A. K.
    Rahim, Robbi
    Madavan, R.
    Muthuraman, U.
    Karthick, Alagar
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 167 - 180