Selective Recycling of Spent Lithium-Ion Batteries Enables Toward Aqueous Zn-Ion Batteries Cathode

被引:2
|
作者
Lv, Xiao Wei [1 ]
Lin, Jiao [1 ]
Zhang, Xiao Dong [1 ]
Huang, Qing Rong [1 ]
Sun, Xuan [1 ,2 ]
Fan, Er Sha [1 ,2 ]
Chen, Ren Jie [1 ,2 ,3 ]
Wu, Feng [1 ,2 ,3 ]
Li, Li [1 ,2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Adv Technol Res Inst, Jinan 250300, Peoples R China
[3] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
aqueous Zn-ion batteries; Mn2O3; cathode; photoexcitation; selective recycling; spent lithium-ion batteries; ORGANIC-ACIDS; CITRIC-ACID; METAL-IONS; RECOVERY; COBALT; MANGANESE; NICKEL;
D O I
10.1002/aenm.202402560
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Effective selective recycling of spent lithium-ion batteries (S-LIBs) and giving recycled products a "second life" are crucial for advancing energy supply circularity, environmental and economic sustainability development. However, separating metal compounds with similar charge differences requires substantial energy, water, and chemical inputs. Herein, an innovative strategy is present for selective recycling S-LIBs by photoexcitation inspired by the Hard Soft Acid Base (HSAB) principle. Theoretical calculations and experimental results show that photoexcitation drives charge transfer and modulates subtle charge density differences among metal components, thereby enhancing their solubility disparity and facilitating metal separation. Remarkably, the photoexcitation-induced metal separation factor reaches 46900 and the metal recovery efficiency approaches 100%, representing a significant improvement over non-photoexcitation separation with a separation factor of non-photoexcitation of merely 2.7. Through techno-economic analysis, the viability of photoexcitation selective recycling technology has been confirmed as an eco-friendly and economical approach for battery recycling. Furthermore, high-value reuse of recovered Mn components is implemented. The Recycled Mn components are treated by calcination to obtain porous, defect-rich Mn2O3, which showed a specific capacity of 613 mAh g(-1) at 0.1 A g(-1)) in aqueous Zn-ion batteries (AZIBs). This work provides fresh insight into recycling S-LIBs and moving toward more sustainable storage technologies.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Cathode electrolysis for the comprehensive recycling of spent lithium-ion batteries
    Zhao, Jingjing
    Qu, Jiakang
    Qu, Xin
    Gao, Shuaibo
    Wang, Dihua
    Yin, Huayi
    GREEN CHEMISTRY, 2022, 24 (16) : 6179 - 6188
  • [2] A Comprehensive Review on Reductive Recycling of Cathode Materials of Spent Lithium-Ion Batteries
    Li, Yiran
    Cai, Junhui
    Wang, Jiayu
    Xu, Shengnv
    Li, Yanjuan
    He, Wei
    Wang, Zhanzhan
    Yang, Shun
    Yan, Xiao
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (35)
  • [3] Solvent extraction for recycling of spent lithium-ion batteries
    Lei, Shuya
    Sun, Wei
    Yang, Yue
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 424
  • [4] Recycling Chain for Spent Lithium-Ion Batteries
    Werner, Denis
    Peuker, Urs Alexander
    Muetze, Thomas
    METALS, 2020, 10 (03)
  • [5] Research on green recycling of lithium-ion batteries cathode waste powder
    Ding, Guoqing
    Liu, Fanfan
    Fan, Xiaomeng
    Gao, Xinyue
    Cao, Guoqin
    Ban, Jinjin
    Li, Zhenzhen
    Hu, Junhua
    CHEMICAL ENGINEERING JOURNAL, 2024, 493
  • [6] Recycling Cathodes from Spent Lithium-Ion Batteries Based on the Selective Extraction of Lithium
    Shen, Xing
    Li, Bo
    Hu, Xin
    Sun, Chuan-Fu
    Hu, Yong-Sheng
    Yang, Chao
    Liu, Huizhou
    Zhao, Junmei
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (30) : 10196 - 10204
  • [7] A sustainable process for metal recycling from spent lithium-ion batteries using ammonium chloride
    Lv, Weiguang
    Wang, Zhonghang
    Cao, Hongbin
    Zheng, Xiaohong
    Jin, Wei
    Zhang, Yi
    Sun, Zhi
    WASTE MANAGEMENT, 2018, 79 : 545 - 553
  • [8] Recycling of spent lithium-ion batteries to resynthesize high-performance cathode materials for sodium-ion storage
    Gong, Hai-Qiang
    Wang, Xing-Yuan
    Ye, Long
    Zhang, Bao
    Ou, Xing
    TUNGSTEN, 2024, 6 (03) : 574 - 584
  • [9] Processes and technologies for the recycling and recovery of spent lithium-ion batteries
    Ordonez, J.
    Gago, E. J.
    Girard, A.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 60 : 195 - 205
  • [10] Recycling of Electrode Materials from Spent Lithium-ion Batteries
    Zhou, Xu
    He, Wen-zhi
    Li, Guang-ming
    Zhang, Xiao-jun
    Huang, Ju-wen
    Zhu, Shu-guang
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,