Exact Solutions to Minmax Optimal Control Problems for Constrained Noisy Linear Systems

被引:1
作者
Ganguly, Siddhartha [1 ]
Chatterjee, Debasish [1 ]
机构
[1] Indian Inst Technol, Syst & Control Engn, Mumbai 400076, India
来源
IEEE CONTROL SYSTEMS LETTERS | 2024年 / 8卷
关键词
Optimization; Optimal control; Vectors; Uncertainty; Approximation algorithms; Symmetric matrices; Noise measurement; Robust optimal control; control under uncertainty; constrained control; linear systems; OPTIMIZATION;
D O I
10.1109/LCSYS.2024.3439208
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a numerically tractable technique for exact solutions to a class of robust minmax optimal control problems (OCPs) under constraints. The underlying dynamical system is assumed to be linear and subjected to bounded disturbances, and the objective function is a sum of quadratic stage and quadratic terminal costs. We impose convex constraints on the states and the control; the control minimizes and the disturbance maximizes the objective. The resulting constrained minmax OCP admits a reformulation in the language of convex semi-infinite programs (CSIPs), and we employ recently developed numerical tools in CSIP to solve the ensuing optimization problem. A simple benchmark numerical example is provided to illustrate our results.
引用
收藏
页码:2063 / 2068
页数:6
相关论文
共 24 条
  • [1] SCENARIO APPROACH FOR MINMAX OPTIMIZATION WITH EMPHASIS ON THE NONCONVEX CASE: POSITIVE RESULTS AND CAVEATS
    Assif, Mishal P. F.
    Chatterjee, Debasish
    Banavar, Ravi
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (02) : 1119 - 1143
  • [2] Borkar VS, 2008, Stochastic Approximation: A Dynamical systems viewpoint
  • [3] DIRECT THEOREMS IN SEMI-INFINITE CONVEX-PROGRAMMING
    BORWEIN, JM
    [J]. MATHEMATICAL PROGRAMMING, 1981, 21 (03) : 301 - 318
  • [4] Campi Marco, 2018, MOS SIAM SERIES OPTI
  • [5] An algorithmic recipe to construct Lyapunov functions for continuous vector fields
    Chattopadhyay, Sameep
    Gupta, Raavi
    Paruchuri, Pradyumna
    Chatterjee, Debasish
    [J]. 2024 AUSTRALIAN & NEW ZEALAND CONTROL CONFERENCE, ANZCC, 2024, : 247 - 252
  • [6] Towards continuous-time MPC: a novel trajectory optimization algorithm
    Das, Souvik
    Ganguly, Siddhartha
    Anjali, Muthyala
    Chatterjee, Debasish
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 3276 - 3281
  • [7] Near-optimal solutions of convex semi-infinite programs via targeted sampling
    Das, Souvik
    Aravind, Ashwin
    Cherukuri, Ashish
    Chatterjee, Debasish
    [J]. ANNALS OF OPERATIONS RESEARCH, 2022, 318 (01) : 129 - 146
  • [8] The Explicit Constrained Min-Max Model Predictive Control of a Discrete-Time Linear System With Uncertain Disturbances
    Gao, Yu
    Chong, Kil To
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (09) : 2373 - 2378
  • [9] Optimization over state feedback policies for robust control with constraints
    Goulart, PJ
    Kerrigan, EC
    Maciejowski, JA
    [J]. AUTOMATICA, 2006, 42 (04) : 523 - 533
  • [10] Guler O, 2010, GRAD TEXTS MATH, V258, P1, DOI 10.1007/978-0-387-68407-9