Eruption Forecasting Model for Copahue Volcano (Southern Andes) Using Seismic Data and Machine Learning: A Joint Interpretation with Geodetic Data (GNSS and InSAR)

被引:3
作者
Cabrera, Leoncio [1 ]
Ardid, Alberto [2 ]
Melchor, Ivan [3 ]
Ruiz, Sergio [1 ]
Symmes-Lopetegui, Blanca [1 ]
Baez, Juan Carlos [4 ]
Delgado, Francisco [5 ]
Martinez-Yanez, Pablo [6 ]
Dempsey, David [2 ]
Cronin, Shane [7 ]
机构
[1] Univ Chile, Fac Ciencias Fis & Matemat, Dept Geofis, Santiago, Chile
[2] Univ Canterbury, Dept Civil & Nat Resources Engn, Christchurch, New Zealand
[3] Univ Nacl Rio Negro, Inst Invest Paleobiol & Geol, CONICET, Rio Negro, Argentina
[4] Univ Chile, Ctr Sismol Nacl, Santiago, Chile
[5] Univ Chile, Fac Ciencias Fis & Matemat, Dept Geol, Santiago, Chile
[6] Univ Catolica Maule, Fac Ciencias Basicas, Talca, Chile
[7] Univ Auckland, Sch Enviro nment, Auckland, New Zealand
关键词
LLAIMA VOLCANO; TIME; DEFORMATION; MECHANISM; ANATOMY; TREMOR; PHASE; LAKE;
D O I
10.1785/0220240022
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Anticipating volcanic eruptions remains a challenge despite significant scientific advancements, leading to substantial human and economic losses. Traditional approaches, like volcano alert levels, provide current volcanic states but do not always include eruption forecasts. Machine learning (ML) emerges as a promising tool for eruption forecasting, offering data-driven insights. We propose an ML pipeline using volcano-seismic data, integrating precursor extraction, classification modeling, and decision-making for eruption alerts. Testing on six Copahue volcano eruptions demonstrates our model's ability to identify precursors and issue advanced warnings pseudoprospectively. Our model provides alerts 5-75 hr before eruptions and achieving a high true negative rate, indicating robust discriminatory power. Integrating short- and long-term data reveals seismic sensitivity, emphasizing the need for comprehensive volcanic monitoring. Our approach showcases ML's potential to enhance eruption forecasting and risk mitigation. In addition, we analyze long-term geodetic data (Interferometric Synthetic Aperture Radar and Global Navigation Satellite System) to assess Copahue volcano deformation trends, in which we notice an absence of noteworthy deformation in the signals associated with the six small eruptions, aligning with their small magnitude.
引用
收藏
页码:2595 / 2610
页数:16
相关论文
共 99 条
[61]   High rate GPS data on active volcanoes: an application to the 2005-2006 Mt. Augustine (Alaska, USA) eruption [J].
Mattia, Mario ;
Palano, Mimmo ;
Aloisi, Marco ;
Bruno, Valentina ;
Bock, Yehuda .
TERRA NOVA, 2008, 20 (02) :134-140
[62]   Long-duration seismicity and their relation to Copahue volcano unrest [J].
Melchor, Ivan ;
Almendros, Javier ;
Hantusch, Marcia ;
Samsonov, Sergey ;
Derauw, Dominique ;
Martinez, Enzo ;
Caselli, Alberto .
EARTH PLANETS AND SPACE, 2022, 74 (01)
[63]   On data reduction methods for volcanic tremor characterization: the 2012 eruption of Copahue volcano, Southern Andes [J].
Melchor, Ivan ;
Almendros, Javier ;
Carniel, Roberto ;
Konstantinou, Kostas I. ;
Hantusch, Marcia ;
Caselli, Alberto .
EARTH PLANETS AND SPACE, 2020, 72 (01)
[64]   Seismic evidence of the active regional tectonic faults and the Copahue volcano, at Caviahue Caldera, Argentina [J].
Montenegro, V. M. ;
Spagnotto, S. ;
Legrand, D. ;
Caselli, A. T. .
BULLETIN OF VOLCANOLOGY, 2021, 83 (04)
[65]   Nationwide urban ground deformation in Japan for 15 years detected by ALOS and Sentinel-1 [J].
Morishita, Yu ;
Sugimoto, Ryu ;
Nakamura, Ryosuke ;
Tsutsumi, Chiaki ;
Natsuaki, Ryo ;
Shimada, Masanobu .
PROGRESS IN EARTH AND PLANETARY SCIENCE, 2023, 10 (01)
[66]   Nationwide urban ground deformation monitoring in Japan using Sentinel-1 LiCSAR products and LiCSBAS [J].
Morishita, Yu .
PROGRESS IN EARTH AND PLANETARY SCIENCE, 2021, 8 (01)
[67]   LiCSBAS: An Open-Source InSAR Time Series Analysis Package Integrated with the LiCSAR Automated Sentinel-1 InSAR Processor [J].
Morishita, Yu ;
Lazecky, Milan ;
Wright, Tim J. ;
Weiss, Jonathan R. ;
Elliott, John R. ;
Hooper, Andy .
REMOTE SENSING, 2020, 12 (03)
[68]   Machine Learning in Earthquake Seismology [J].
Mousavi, S. Mostafa ;
Beroza, Gregory C. .
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2023, 51 :105-129
[69]   Eruption frequency patterns through time for the current (1999-2018) activity cycle at Volcan de Fuego derived from remote sensing data: Evidence for an accelerating cycle of explosive paroxysms and potential implications of eruptive activity [J].
Naismith, Ailsa K. ;
Watson, I. Matthew ;
Escobar-Wolf, Rudiger ;
Chigna, Gustavo ;
Thomas, Helen ;
Coppola, Diego ;
Chun, Carla .
JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 2019, 371 :206-219
[70]   Viscoelastic relaxation: A mechanism to explain the decennial large surface displacements at the Laguna del Maule silicic volcanic complex [J].
Novoa, C. ;
Remy, D. ;
Gerbault, M. ;
Baez, J. C. ;
Tassara, A. ;
Cordova, L. ;
Cardona, C. ;
Granger, M. ;
Bonvalot, S. ;
Delgado, F. .
EARTH AND PLANETARY SCIENCE LETTERS, 2019, 521 :46-59