Dual digraphs of finite meet-distributive and modular lattices

被引:0
作者
Craig, Andrew [1 ,2 ]
Haviar, Miroslav [1 ,3 ]
Marais, Klarise [1 ]
机构
[1] Univ Johannesburg, Dept Math & Appl Math, POB 524, ZA-2006 Auckland Pk, South Africa
[2] Natl Inst Theoret & Computat Sci NITheCS, Stellenbosch, South Africa
[3] M Bel Univ, Fac Nat Sci, Dept Math, Tajovskeho 40, Banska Bystrica 97401, Slovakia
来源
CUBO-A MATHEMATICAL JOURNAL | 2024年 / 26卷 / 02期
基金
新加坡国家研究基金会;
关键词
Semimodular lattice; lower semimodular lattice; modular lattice; TiRS digraph; meet- distributive lattice; finite convex geometry;
D O I
10.56754/0719-0646.2602.279
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the digraphs that are dual representations of finite lattices satisfying conditions related to meet distributivity and modularity. This is done using the dual digraph representation of finite lattices by Craig, Gouveia and Haviar (2015). These digraphs, known as TiRS digraphs, have their origins in the dual representations of lattices by Urquhart (1978) and Ploscica (1995). We describe two properties of finite lattices which are weakenings of (upper) semi- modularity and lower semimodularity respectively, and then show how these properties have a simple description in the dual digraphs. Combined with previous work in this journal on dual digraphs of semidistributive lattices (2022), it leads to a dual representation of finite meet-distributive lattices. This provides a natural link to finite convex geometries. In addition, we present two sufficient conditions on a finite TiRS digraph for its dual lattice to be modular. We close by posing three open problems.
引用
收藏
页码:279 / 302
页数:24
相关论文
共 15 条
[1]  
Adaricheva K., 2016, LATTICE THEORY SPECI, V2, P153, DOI DOI 10.1007/978-3-319-44236-5_5
[2]   Join-semidistributive lattices and convex geometries [J].
Adaricheva, KV ;
Gorbunov, VA ;
Tumanov, VI .
ADVANCES IN MATHEMATICS, 2003, 173 (01) :1-49
[3]  
[Anonymous], 1975, Algebra Universalis, DOI DOI 10.1007/BF02485233
[4]  
Craig A., 2022, Acta Univ. M. Belii Ser. Math., V30, P1
[5]   A Fresh Perspective on Canonical Extensions for Bounded Lattices [J].
Craig, A. P. K. ;
Haviar, M. ;
Priestley, H. A. .
APPLIED CATEGORICAL STRUCTURES, 2013, 21 (06) :725-749
[6]  
Craig A, 2022, CUBO, V24, P369
[7]   TiRS graphs and TiRS frames: a new setting for duals of canonical extensions [J].
Craig, Andrew P. K. ;
Gouveia, Maria J. ;
Haviar, Miroslav .
ALGEBRA UNIVERSALIS, 2015, 74 (1-2) :123-138
[8]  
Ganter B., 1999, FORMAL CONCEPT ANAL, DOI [10.1007/978-3-642-59830-2, DOI 10.1007/978-3-642-59830-2]
[9]  
Grätzer G, 2011, LATTICE THEORY: FOUNDATION, P1, DOI 10.1007/978-3-0348-0018-1
[10]  
Kadima D., 2023, Honours thesis