Joint analysis of longitudinal count and binary response data in the presence of outliers

被引:0
作者
Sinha, Sanjoy [1 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON, Canada
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2025年 / 53卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
Joint model; log-linear model; logistic regression; mixed model; robust estimation; shared random effect; ROBUST ESTIMATION; MODELS; INFERENCE; REGRESSION;
D O I
10.1002/cjs.11819
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we develop an innovative, robust method for jointly analyzing longitudinal count and binary responses. The method is useful for bounding the influence of potential outliers in the data when estimating the model parameters. We use a log-linear model for the count response and a logistic regression model for the binary response, where the two response processes are linked through a set of association parameters. The asymptotic properties of the robust estimators are briefly studied. The empirical properties of the estimators are studied based on simulations. The study shows that the proposed estimators are approximately unbiased and also efficient when fitting a joint model to data contaminated with outliers. We also apply the proposed method to some real longitudinal survey data obtained from a health study. L'auteur de ce travail propose une nouvelle approche robuste et innovante pour l'analyse conjointe de donn & eacute;es longitudinales discr & egrave;tes, combinant des r & eacute;ponses de d & eacute;nombrement et binaires. Cette m & eacute;thodologie vise & agrave; r & eacute;duire l'impact n & eacute;gatif potentiel des valeurs aberrantes lors de l'estimation des param & egrave;tres du mod & egrave;le conjoint. Le cadre propos & eacute; repose sur un mod & egrave;le log-lin & eacute;aire pour la composante de comptage et une r & eacute;gression logistique pour la composante binaire, les deux processsus & eacute;tant li & eacute;s par un ensemble de param & egrave;tres d'association. Les propri & eacute;t & eacute;s asymptotiques des estimateurs robustes d & eacute;velopp & eacute;s sont bri & egrave;vement examin & eacute;es. Par le biais de simulations num & eacute;riques, les auteurs & eacute;tudient le comportement empirique de leurs estimateurs, et montrent que ceux-ci sont approximativement sans biais et efficaces lors de l'ajustement d'un mod & egrave;le conjoint & aacute; des donn & eacute;es contamin & eacute;es par des valeurs aberrantes. Enfin, l'auteur applique son approche & agrave; un ensemble r & eacute;el de donn & eacute;es longitudinales issues d'une enqu & ecirc;te de sant & eacute;.
引用
收藏
页数:19
相关论文
共 34 条
[1]   Joint modeling of longitudinal continuous, longitudinal ordinal, and time-to-event outcomes [J].
Alam, Khurshid ;
Maity, Arnab ;
Sinha, Sanjoy K. ;
Rizopoulos, Dimitris ;
Sattar, Abdus .
LIFETIME DATA ANALYSIS, 2021, 27 (01) :64-90
[2]  
[Anonymous], 2019, The health and retirement study: Aging in the 21st century challenges and opportunities for Americans
[3]   APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS [J].
BRESLOW, NE ;
CLAYTON, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :9-25
[4]   Robust inference for generalized linear models [J].
Cantoni, E ;
Ronchetti, E .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) :1022-1030
[5]   Estimating correlation by using a general linear mixed model: evaluation of the relationship between the concentration of HIV-1 RNA in blood and semen [J].
Chakraborty, H ;
Helms, RW ;
Sen, PK ;
Cohen, MS .
STATISTICS IN MEDICINE, 2003, 22 (09) :1457-1464
[6]  
HAMPEL F. R., 1986, Robust statistics: the approach based on influence functions
[7]   Prediction of Pregnancy: A Joint Model for Longitudinal and Binary Data [J].
Horrocks, Julie ;
van Den Heuvel, Marianne J. .
BAYESIAN ANALYSIS, 2009, 4 (03) :523-538
[8]  
HRS, 2019, RAND HRS LONGITUDINA
[9]   ROBUST ESTIMATION OF LOCATION PARAMETER [J].
HUBER, PJ .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (01) :73-&
[10]   Mixed models approaches for joint modeling of different types of responses [J].
Ivanova, Anna ;
Molenberghs, Geert ;
Verbeke, Geert .
JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2016, 26 (04) :601-618