A decomposition theorem for Q-Fano Kahler-Einstein varieties

被引:0
|
作者
Druel, Stephane [1 ]
Guenancia, Henri [2 ]
Paun, Mihai [3 ]
机构
[1] Univ Lyon, Univ Claude Bernard Lyon 1, Inst Camille Jordan, CNRS,UMR 5208, F-69622 Villeurbanne, France
[2] Univ Paul Sabatier, Inst Math Toulouse, F-31062 Toulouse 9, France
[3] Univ Bayreuth, Lehrstuhl Math 8, D-95440 Bayreuth, Germany
关键词
Q-Fano varieties; singular Kahler-Einstein metrics; stable reflexive sheaves; algebraically integrable foliations; TRIVIAL CANONICAL CLASS; METRICS; FOLIATIONS; STABILITY; SPACES; LIMITS;
D O I
10.5802/crmath.612
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Q-Fano variety admitting a Kahler-Einstein metric. We prove that up to a finite quasietale cover, X splits isometrically as a product of Kahler-Einstein Q-Fano varieties whose tangent sheaf is stable with respect to the anticanonical polarization. This relies among other things on a very general splitting theorem for algebraically integrable foliations. We also prove that the canonical extension of TX by OX is polystable with respect to the anticanonical polarization.
引用
收藏
页码:93 / 118
页数:27
相关论文
共 50 条
  • [31] FANO MANIFOLDS WITH NEF TANGENT BUNDLES ARE WEAKLY ALMOST KAHLER-EINSTEIN
    Demailly, Jean-Pierre
    ASIAN JOURNAL OF MATHEMATICS, 2018, 22 (02) : 285 - 290
  • [32] Kahler-Einstein Metrics on Stable Varieties and log Canonical Pairs
    Berman, Robert J.
    Guenancia, Henri
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (06) : 1683 - 1730
  • [33] Kahler-Einstein fillings
    Guedj, Vincent
    Kolev, Boris
    Yeganefar, Nader
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 88 : 737 - 760
  • [34] Generalized Matsushima's theorem and Kahler-Einstein cone metrics
    Li, Long
    Zheng, Kai
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
  • [35] Autodual Einstein versus Kahler-Einstein
    Biquard, O
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (03) : 598 - 633
  • [36] Alpha invariant and K-stability of Q-Fano varieties
    Odaka, Yuji
    Sano, Yuji
    ADVANCES IN MATHEMATICS, 2012, 229 (05) : 2818 - 2834
  • [37] QUASI-PROJECTIVITY OF THE MODULI SPACE OF SMOOTH KAHLER-EINSTEIN FANO MANIFOLDS
    Li, Chi
    Wang, Xiaowei
    Xu, Chenyang
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2018, 51 (03): : 739 - 772
  • [38] Bubbling of Kahler-Einstein metrics
    Sun, Song
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2025, 21 (03) : 1317 - 1348
  • [39] A SURVEY ON KAHLER-EINSTEIN METRICS
    YAU, ST
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1984, 41 : 285 - 289
  • [40] Twisted Kahler-Einstein metrics
    Ross, Julius
    Szekelyhidi, Gabor
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (03) : 1025 - 1044