A decomposition theorem for Q-Fano Kahler-Einstein varieties

被引:0
|
作者
Druel, Stephane [1 ]
Guenancia, Henri [2 ]
Paun, Mihai [3 ]
机构
[1] Univ Lyon, Univ Claude Bernard Lyon 1, Inst Camille Jordan, CNRS,UMR 5208, F-69622 Villeurbanne, France
[2] Univ Paul Sabatier, Inst Math Toulouse, F-31062 Toulouse 9, France
[3] Univ Bayreuth, Lehrstuhl Math 8, D-95440 Bayreuth, Germany
关键词
Q-Fano varieties; singular Kahler-Einstein metrics; stable reflexive sheaves; algebraically integrable foliations; TRIVIAL CANONICAL CLASS; METRICS; FOLIATIONS; STABILITY; SPACES; LIMITS;
D O I
10.5802/crmath.612
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Q-Fano variety admitting a Kahler-Einstein metric. We prove that up to a finite quasietale cover, X splits isometrically as a product of Kahler-Einstein Q-Fano varieties whose tangent sheaf is stable with respect to the anticanonical polarization. This relies among other things on a very general splitting theorem for algebraically integrable foliations. We also prove that the canonical extension of TX by OX is polystable with respect to the anticanonical polarization.
引用
收藏
页码:93 / 118
页数:27
相关论文
共 50 条