A decomposition theorem for Q-Fano Kahler-Einstein varieties

被引:0
|
作者
Druel, Stephane [1 ]
Guenancia, Henri [2 ]
Paun, Mihai [3 ]
机构
[1] Univ Lyon, Univ Claude Bernard Lyon 1, Inst Camille Jordan, CNRS,UMR 5208, F-69622 Villeurbanne, France
[2] Univ Paul Sabatier, Inst Math Toulouse, F-31062 Toulouse 9, France
[3] Univ Bayreuth, Lehrstuhl Math 8, D-95440 Bayreuth, Germany
关键词
Q-Fano varieties; singular Kahler-Einstein metrics; stable reflexive sheaves; algebraically integrable foliations; TRIVIAL CANONICAL CLASS; METRICS; FOLIATIONS; STABILITY; SPACES; LIMITS;
D O I
10.5802/crmath.612
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Q-Fano variety admitting a Kahler-Einstein metric. We prove that up to a finite quasietale cover, X splits isometrically as a product of Kahler-Einstein Q-Fano varieties whose tangent sheaf is stable with respect to the anticanonical polarization. This relies among other things on a very general splitting theorem for algebraically integrable foliations. We also prove that the canonical extension of TX by OX is polystable with respect to the anticanonical polarization.
引用
收藏
页码:93 / 118
页数:27
相关论文
共 50 条
  • [1] EXISTENCE AND DEFORMATIONS OF KAHLER-EINSTEIN METRICS ON SMOOTHABLE Q-FANO VARIETIES
    Spotti, Cristiano
    Sun, Song
    Yao, Chengjian
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (16) : 3043 - 3083
  • [2] K-polystability of Q-Fano varieties admitting Kahler-Einstein metrics
    Berman, Robert J.
    INVENTIONES MATHEMATICAE, 2016, 203 (03) : 973 - 1025
  • [3] Finiteness of Q-Fano Compactifications of Semisimple Groups with Kahler-Einstein Metrics
    Li, Yan
    Li, Zhenye
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (15) : 11776 - 11795
  • [4] Singular Kahler-Einstein metrics on Q-Fano compactifications of Lie groups
    Li, Yan
    Tian, Gang
    Zhu, Xiaohua
    MATHEMATICS IN ENGINEERING, 2023, 5 (02): : 1 - 43
  • [5] METRICS OF KAHLER-EINSTEIN ON THE FANO VARIETIES
    Eyssidieux, Philippe
    ASTERISQUE, 2016, (380) : 207 - 229
  • [6] The volume of singular Kahler-Einstein Fano varieties
    Liu, Yuchen
    COMPOSITIO MATHEMATICA, 2018, 154 (06) : 1131 - 1158
  • [7] The volume of Kahler-Einstein Fano varieties and convex bodies
    Berman, Robert J.
    Berndtsson, Bo
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 723 : 127 - 152
  • [8] Compact Moduli Spaces of Kahler-Einstein Fano Varieties
    Odaka, Yuji
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2015, 51 (03) : 549 - 565
  • [9] Kahler-Einstein Metrics on Q-Smoothable Fano Varieties, Their Moduli and Some Applications
    Spotti, Cristiano
    COMPLEX AND SYMPLECTIC GEOMETRY, 2017, 21 : 211 - 229
  • [10] ON THE PROPER MODULI SPACES OF SMOOTHABLE KAHLER-EINSTEIN FANO VARIETIES
    Li, Chi
    Wang, Xiaowei
    Xu, Chenyang
    DUKE MATHEMATICAL JOURNAL, 2019, 168 (08) : 1387 - 1459