Parameter estimation of fractional-order system with improved Archimedes optimization algorithm

被引:0
|
作者
Chen, Yinbin [1 ]
Yang, Renhuan [1 ]
Yang, Xiuzeng [2 ]
Yang, Renyu [3 ]
Huang, Qidong [1 ]
Chen, Guilian [1 ]
Zhang, Ling [4 ]
Wei, Mengyu [5 ]
Zhou, Yongqiang [6 ]
机构
[1] Technol Jinan Univ, Coll Informat Sci, Guangzhou 510632, Peoples R China
[2] Guangxi Normal Univ Nationalities, Dept Phys & Elect Engn, Chongzuo 532200, Peoples R China
[3] Guangdong Univ Finance Econ, Sch Informat Sci, Guangzhou 510320, Peoples R China
[4] Guangzhou Vocat Coll Technol & Business, Expt & Training Ctr, Guangzhou 510632, Peoples R China
[5] Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China
[6] Wuyi Univ, Sch Elect & Informat Engn, Jiangmen 550001, Peoples R China
来源
关键词
Parameter estimation; fractional-order system; improved Archimedes optimization algorithm; intelligent optimization algorithm;
D O I
10.1142/S0129183124501973
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, aiming at the problems of slow estimation speed and low estimation precision of traditional fractional-order system (FOS) parameter estimation method, an improved Archimedes optimization algorithm (IAOA) is proposed to calculate the optimal value. By establishing the parameter estimation model and the cost function, the parameter estimation problem is formulated as an optimization problem. As opposed to the Archimedes optimization algorithm (AOA), the IAOA introduces three improvements: leadership behavior, levy flight behavior and a new adaptive strategy. This paper verifies the performance of the IAOA by selecting 10 classic test functions. IAOA is applied to the parameter estimation problem of fractional-order unified system to verify the accuracy and feasibility of the algorithm. The simulation results prove that the IAOA has better global optimization ability and estimation accuracy than the original algorithm.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] An innovative parameter estimation for fractional-order systems in the presence of outliers
    Rongzhi Cui
    Yiheng Wei
    Yuquan Chen
    Songsong Cheng
    Yong Wang
    Nonlinear Dynamics, 2017, 89 : 453 - 463
  • [22] Offline Parameter Estimation of a Fractional-Order Buck Converter Model
    AbdelAty, Amr M.
    Al-Durra, Ahmed
    Zeineldin, Hatem
    El-Saadany, Ehab F.
    2023 IEEE PES CONFERENCE ON INNOVATIVE SMART GRID TECHNOLOGIES, ISGT MIDDLE EAST, 2023,
  • [23] Parameter Estimation of Fractional-Order Chaotic Power System Based on Lens Imaging Learning Strategy State Transition Algorithm
    Ai, Chunyu
    He, Shan
    Fan, Xiaochao
    IEEE ACCESS, 2023, 11 : 13724 - 13737
  • [24] Sequential Parameter Identification of Fractional-Order Duffing System Based on Differential Evolution Algorithm
    Lai, Li
    Ji, Yuan-Dong
    Zhong, Su-Chuan
    Zhang, Lu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [25] Research on particle swarm optimization algorithm with characteristic of quantum parallel and its application in parameter estimation for fractional-order chaotic systems
    Huang Yu
    Liu Yu-Feng
    Peng Zhi-Min
    Ding Yan-Jun
    ACTA PHYSICA SINICA, 2015, 64 (03)
  • [26] Parameter Optimization in Waveform Relaxation for Fractional-Order RC Circuits
    Wu, Shu-Lin
    Al-Khaleel, Mohammad
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2017, 64 (07) : 1781 - 1790
  • [27] An Improved Fractional-Order Optical Flow Model for Motion Estimation
    Zhu, Bin
    Tian, Lianfang
    Du, Qiliang
    Wu, Qiuxia
    Shi, Lixin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [28] An Improved Archimedes Optimization Algorithm (IAOA)
    Wang, Yan-Jiao
    Chen, Ming-Chi
    Ku, Chin Soon
    Journal of Network Intelligence, 2023, 8 (03): : 693 - 709
  • [29] A fractional-order modelling and parameter identification method via improved driving training-based optimization for piezoelectric nonlinear system
    Ni, Lei
    Ping, Yan
    Li, Yuanyuan
    Zhang, Lanqiang
    Wang, Geng
    SENSORS AND ACTUATORS A-PHYSICAL, 2024, 366
  • [30] Improved recursive algorithm for fractional-order system solution based on PSE and Tustin transform
    School of Automation, Nanjing Univ. of Science and Technology, Nanjing 210094, China
    不详
    Xi Tong Cheng Yu Dian Zi Ji Shu/Syst Eng Electron, 2009, 11 (2736-2741):