Parameter estimation of fractional-order system with improved Archimedes optimization algorithm

被引:0
|
作者
Chen, Yinbin [1 ]
Yang, Renhuan [1 ]
Yang, Xiuzeng [2 ]
Yang, Renyu [3 ]
Huang, Qidong [1 ]
Chen, Guilian [1 ]
Zhang, Ling [4 ]
Wei, Mengyu [5 ]
Zhou, Yongqiang [6 ]
机构
[1] Technol Jinan Univ, Coll Informat Sci, Guangzhou 510632, Peoples R China
[2] Guangxi Normal Univ Nationalities, Dept Phys & Elect Engn, Chongzuo 532200, Peoples R China
[3] Guangdong Univ Finance Econ, Sch Informat Sci, Guangzhou 510320, Peoples R China
[4] Guangzhou Vocat Coll Technol & Business, Expt & Training Ctr, Guangzhou 510632, Peoples R China
[5] Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China
[6] Wuyi Univ, Sch Elect & Informat Engn, Jiangmen 550001, Peoples R China
来源
关键词
Parameter estimation; fractional-order system; improved Archimedes optimization algorithm; intelligent optimization algorithm;
D O I
10.1142/S0129183124501973
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, aiming at the problems of slow estimation speed and low estimation precision of traditional fractional-order system (FOS) parameter estimation method, an improved Archimedes optimization algorithm (IAOA) is proposed to calculate the optimal value. By establishing the parameter estimation model and the cost function, the parameter estimation problem is formulated as an optimization problem. As opposed to the Archimedes optimization algorithm (AOA), the IAOA introduces three improvements: leadership behavior, levy flight behavior and a new adaptive strategy. This paper verifies the performance of the IAOA by selecting 10 classic test functions. IAOA is applied to the parameter estimation problem of fractional-order unified system to verify the accuracy and feasibility of the algorithm. The simulation results prove that the IAOA has better global optimization ability and estimation accuracy than the original algorithm.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Parameter estimation for fractional-order chaotic systems by improved bird swarm optimization algorithm
    Zhang, Pei
    Yang, Renyu
    Yang, Renhuan
    Ren, Gong
    Yang, Xiuzeng
    Xu, Chuangbiao
    Xu, Baoguo
    Zhang, Huatao
    Cai, Yanning
    Lu, Yaosheng
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2019, 30 (11):
  • [2] A parameter estimation method for fractional-order nonlinear systems based on improved whale optimization algorithm
    Ren, Gong
    Yang, Renhuan
    Yang, Renyu
    Zhang, Pei
    Yang, Xiuzeng
    Xu, Chuangbiao
    Hu, Baoguo
    Zhang, Huatao
    Lu, Yaosheng
    Cai, Yanning
    MODERN PHYSICS LETTERS B, 2019, 33 (07):
  • [3] Parameter estimation for fractional-order nonlinear systems based on improved sparrow search algorithm
    Zhou, Yongqiang
    Yang, Renhuan
    Chen, Yibin
    Huang, Qidong
    Shen, Chao
    Yang, Xiuzeng
    Zhang, Ling
    Wei, Mengyu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2024, 35 (10):
  • [4] A FRACTIONAL-ORDER GENETIC ALGORITHM FOR PARAMETER OPTIMIZATION OF THE MOISTURE MOVEMENT IN A BIO-RETENTION SYSTEM
    Yang, Xiao-Hua
    Liu, Tong
    Li, Yu-Qi
    THERMAL SCIENCE, 2019, 23 (04): : 2343 - 2350
  • [5] Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm
    Huang, Yu
    Guo, Feng
    Li, Yongling
    Liu, Yufeng
    PLOS ONE, 2015, 10 (01):
  • [6] A modified Salp Swarm Algorithm for parameter estimation of fractional-order chaotic systems
    Cai, Qingwen
    Yang, Renhuan
    Shen, Chao
    Yue, Kelong
    Chen, Yibin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2023, 34 (10):
  • [7] Fractional-order Model Identification of Cement Quality based on Improved Particle Swarm Optimization Algorithm and fractional-order PID controller
    Yan, ShuaiShuai
    Zhang, Qiang
    Meng, Liang
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 1323 - 1329
  • [8] Fractional-order system identification based on an improved differential evolution algorithm
    Yu, Wei
    Liang, HengHui
    Chen, Rui
    Wen, Chenglin
    Luo, Ying
    ASIAN JOURNAL OF CONTROL, 2022, 24 (05) : 2617 - 2631
  • [9] Optimization of Fractional-order Stochastic Resonance Parameters Based On Improved Genetic Algorithm
    Wang, Yangbaihui
    Zheng, Yongjun
    Huang, Ming
    Hu, Xiaofeng
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 3250 - 3255
  • [10] Parameter estimation of linear fractional-order system from laplace domain data
    Zhang, Tao
    Lu, Zhong-rong
    Liu, Ji-ke
    Chen, Yan-mao
    Liu, Guang
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 438