Finitely generated simple sharply 2-transitive groups

被引:0
作者
Andre, Simon [1 ]
Guirardel, Vincent [2 ]
机构
[1] WWU Munster, Inst Math Log & Grundlagenforsch, Einsteinstr 62, D-48149 Munster, Germany
[2] Univ Rennes, CNRS, IRMAR UMR 6625, Rennes, France
基金
欧洲研究理事会;
关键词
20B22; 20F65; 20F67;
D O I
10.1112/S0010437X24007358
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct the first examples of infinite sharply 2-transitive groups which are finitely generated. Moreover, we construct such a group that has Kazhdan property (T), is simple, has exactly four conjugacy classes and we show that this number is as small as possible.
引用
收藏
页码:1941 / 1957
页数:18
相关论文
共 24 条
[1]   Normal subgroups of GLn(D) are not finitely generated [J].
Akbari, S ;
Mahdavi-Hezavehi, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (06) :1627-1632
[2]   SIMPLE SHARPLY 2-TRANSITIVE GROUPS [J].
Andre, Simon ;
Tent, Katrin .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (06) :3965-3993
[3]  
[Anonymous], 2016, Jahresber Dtsch Math-Ver.
[4]   Construction of a quotient ring of Z2 F in which a binomial 1+w is invertible using small cancellation methods [J].
Atkarskaya, A. ;
Kanel-Belov, A. ;
Plotkin, E. ;
Rips, E. .
GROUPS, ALGEBRAS AND IDENTITIES, 2019, 726 :1-76
[5]  
Bekka B, 2008, NEW MATH MONOGR, P1, DOI 10.1017/CBO9780511542749
[6]  
Cameron P., 2000, Classical groups
[7]   The space of finitely generated groups [J].
Champetier, C .
TOPOLOGY, 2000, 39 (04) :657-680
[8]  
COHEN PM, 1971, P LOND MATH SOC, V23, P193
[9]  
Coulon R., 2013, PREPRINT
[10]   Combination of convergence groups [J].
Dahmani, F .
GEOMETRY & TOPOLOGY, 2003, 7 :933-963