Approximation Error of Sobolev Regular Functions with Tanh Neural Networks: Theoretical Impact on PINNs

被引:0
|
作者
Girault, Benjamin [1 ]
Emonet, Remi [1 ]
Habrard, Amaury [1 ]
Patracone, Jordan [1 ]
Sebban, Marc [1 ]
机构
[1] Univ Jean Monnet St Etienne, CNRS, Inst Opt, Grad Sch,Inria,Lab Hubert Curien, F-42023 St Etienne, France
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT IV, ECML PKDD 2024 | 2024年 / 14944卷
关键词
Approximation error; Sobolev space; Physics-informed neural network; tanh activation function;
D O I
10.1007/978-3-031-70359-1_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Considering the key role played by derivatives in Partial Differential Equations (PDEs), using the tanh activation function in Physics-Informed Neural Networks (PINNs) yields useful smoothness properties to derive theoretical guarantees in Sobolev norm. In this paper, we conduct an extensive functional analysis, unveiling tighter approximation bounds compared to prior works, especially for higher order PDEs. These better guarantees translate into smaller PINN architectures and improved generalization error with arbitrarily small Sobolev norms of the PDE residuals.
引用
收藏
页码:266 / 282
页数:17
相关论文
共 8 条