A Lightweight CNN Based on Axial Depthwise Convolution and Hybrid Attention for Remote Sensing Image Dehazing

被引:4
作者
He, Yufeng [1 ,2 ]
Li, Cuili [1 ,2 ]
Li, Xu [1 ,2 ]
Bai, Tiecheng [1 ,2 ]
机构
[1] Tarim Univ, Sch Informat Engn, Alaer 843300, Peoples R China
[2] Tarim Univ, Key Lab Tarim Oasis Agr, Minist Educ, Alaer 843300, Peoples R China
基金
中国国家自然科学基金;
关键词
remote sensing; haze removal; attention mechanism; haze image synthesis; CNN; HAZE REMOVAL; NETWORK; VISION;
D O I
10.3390/rs16152822
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hazy weather reduces contrast, narrows the dynamic range, and blurs the details of the remote sensing image. Additionally, color fidelity deteriorates, causing color shifts and image distortion, thereby impairing the utility of remote sensing data. In this paper, we propose a lightweight remote sensing-image-dehazing network, named LRSDN. The network comprises two tailored, lightweight modules arranged in cascade. The first module, the axial depthwise convolution and residual learning block (ADRB), is for feature extraction, efficiently expanding the convolutional receptive field with little computational overhead. The second is a feature-calibration module based on the hybrid attention block (HAB), which integrates a simplified, yet effective channel attention module and a pixel attention module embedded with an observational prior. This joint attention mechanism effectively enhances the representation of haze features. Furthermore, we introduce a novel method for remote sensing hazy image synthesis using Perlin noise, facilitating the creation of a large-scale, fine-grained remote sensing haze image dataset (RSHD). Finally, we conduct both quantitative and qualitative comparison experiments on multiple publicly available datasets. The results demonstrate that the LRSDN algorithm achieves superior dehazing performance with fewer than 0.1M parameters. We also validate the positive effects of the LRSDN in road extraction and land cover classification applications.
引用
收藏
页数:29
相关论文
共 55 条
[1]   NH-HAZE: An Image Dehazing Benchmark with Non-Homogeneous Hazy and Haze-Free Images [J].
Ancuti, Codruta O. ;
Ancuti, Cosmin ;
Timofte, Radu .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, :1798-1805
[2]   Single Image Dehazing Using Haze-Lines [J].
Berman, Dana ;
Treibitz, Tali ;
Avidan, Shai .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (03) :720-734
[3]   1M parameters are enough? A lightweight CNN-based model for medical image segmentation [J].
Binh-Duong Dinh ;
Thanh-Thu Nguyen ;
Thi-Thao Tran ;
Van-Truong Pham .
2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, :1279-1284
[4]   Single Image Dehazing Using Color Ellipsoid Prior [J].
Bui, Trung Minh ;
Kim, Wonha .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (02) :999-1009
[5]   Gated Context Aggregation Network for Image Dehazing and Deraining [J].
Chen, Dongdong ;
He, Mingming ;
Fan, Qingnan ;
Liao, Jing ;
Zhang, Liheng ;
Hou, Dongdong ;
Yuan, Lu ;
Hua, Gang .
2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, :1375-1383
[6]  
Chen KY, 2023, IEEE T GEOSCI REMOTE, V61, DOI [10.1109/TGRS.2023.3283435, 10.1109/TGRS.2023.3272473]
[7]   Building Extraction from Remote Sensing Images with Sparse Token Transformers [J].
Chen, Keyan ;
Zou, Zhengxia ;
Shi, Zhenwei .
REMOTE SENSING, 2021, 13 (21)
[8]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[9]   Simple Baselines for Image Restoration [J].
Chen, Liangyu ;
Chu, Xiaojie ;
Zhang, Xiangyu ;
Sun, Jian .
COMPUTER VISION, ECCV 2022, PT VII, 2022, 13667 :17-33
[10]   Hybrid Attention Fusion Embedded in Transformer for Remote Sensing Image Semantic Segmentation [J].
Chen, Yan ;
Dong, Quan ;
Wang, Xiaofeng ;
Zhang, Qianchuan ;
Kang, Menglei ;
Jiang, Wenxiang ;
Wang, Mengyuan ;
Xu, Lixiang ;
Zhang, Chen .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 :4421-4435