Some properties of solutions of a linear set-valued differential equation with conformable fractional derivative

被引:0
作者
Komleva, Tatyana a. [1 ]
Plotnikov, Andrej, V [1 ]
Skripnik, Natalia, V [2 ]
机构
[1] Odessa State Acad Civil Engn & Architecture, Didrihsonastr 4, UA-65029 Odessa, Ukraine
[2] Odessa II Mechnikov Natl Univ, Dvoryanskaya str 2, UA-65082 Odessa, Ukraine
来源
CUBO-A MATHEMATICAL JOURNAL | 2024年 / 26卷 / 02期
关键词
Conformable fractional derivative; set-valued differential equation; Hukuhara derivative; generalized derivative; DEFINITION; EXISTENCE; TIME;
D O I
10.56754/0719-0646.2602.191
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The article explores a linear set-valued differential equation featuring both conformable fractional and generalized conformable fractional derivatives. It presents conditions for the existence of solutions and provides analytical expressions for the shape of solution sections at different time points. Model examples are employed to illustrate the results.
引用
收藏
页码:191 / 215
页数:25
相关论文
共 57 条
[1]  
Akkurt A, 2017, Konuralp. J. Math, V5, P248
[2]   A remark on local fractional calculus and ordinary derivatives [J].
Almeida, Ricardo ;
Guzowska, Malgorzata ;
Odzijewicz, Tatiana .
OPEN MATHEMATICS, 2016, 14 :1122-1124
[3]  
Amrahov SE, 2016, FUZZY SET SYST, V295, P57, DOI [10.1016/j.fss.2015.12.0020165, 10.1016/j.fss.2015.12.002]
[4]   Extension of Matched Asymptotic Method to Fractional Boundary Layers Problems [J].
Atangana, Abdon ;
Goufo, Emile Franc Doungmo .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
[5]   A DIFFERENTIAL CALCULUS FOR MULTIFUNCTIONS [J].
BANKS, HT ;
JACOBS, MQ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1970, 29 (02) :246-&
[6]   TRAJECTORY INTEGRALS OF SET VALUED FUNCTIONS [J].
BRIDGLAND, TF .
PACIFIC JOURNAL OF MATHEMATICS, 1970, 33 (01) :43-+
[7]  
Chakraverty S, 2017, FUZZY DIFFERENTIAL EQUATIONS AND APPLICATIONS FOR ENGINEERS AND SCIENTISTS, P1
[8]   Generalized derivative and π-derivative for set-valued functions [J].
Chalco-Cano, Y. ;
Roman-Flores, H. ;
Jimenez-Gamero, M. D. .
INFORMATION SCIENCES, 2011, 181 (11) :2177-2188
[9]   Time-space fabric underlying anomalous diffusion [J].
Chen, W .
CHAOS SOLITONS & FRACTALS, 2006, 28 (04) :923-929
[10]   Anomalous diffusion modeling by fractal and fractional derivatives [J].
Chen, Wen ;
Sun, Hongguang ;
Zhang, Xiaodi ;
Korosak, Dean .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1754-1758