Exploring Nitrogen Reduction Reaction Mechanisms with Graphyne-Confined Single-Atom Catalysts: A Computational Study Incorporating Electrode Potential and pH

被引:1
作者
Hu, Xiuli [1 ]
Li, Xiang [1 ]
Su, Neil Qiang [1 ]
机构
[1] Nankai Univ, Frontiers Sci Ctr New Organ Matter, Dept Chem,Key Lab Adv Energy Mat Chem, State Key Lab Adv Chem Power Sources,Minist Educ, Tianjin 300071, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 38期
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; AMMONIA-SYNTHESIS; OXYGEN REDUCTION; DOPED GRAPHENE; ELECTROCATALYSTS; ELECTROREDUCTION; EVOLUTION; FIXATION;
D O I
10.1021/acs.jpclett.4c01812
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study reconciles discrepancies between practical electrochemical conditions and theoretical density functional theory (DFT) frameworks, evaluating three graphyne-confined single-atom catalysts (Mo-TEB, Mo@GY, and Mo@GDY). Using both constant charge models in vacuum and constant potential models with continuum implicit solvation, we closely mimic real-world electrochemical environments. Our findings highlight the crucial role of explicitly incorporating electrode potential and pH in the constant potential model, providing enhanced insights into the nitrogen reduction reaction (NRR) mechanisms. Notably, the superior NRR performance of Mo-TEB is attributed to the d-band center's proximity to the Fermi level and enhanced magnetic moments at the atomic center. This research advances our understanding of graphyne-confined single-atom catalysts as effective NRR platforms and underscores the significance of the constant potential model for accurate DFT studies of electrochemical reactions.
引用
收藏
页码:9692 / 9705
页数:14
相关论文
共 50 条
  • [1] Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: a computational study
    Jiao, Dongxu
    Liu, Yuejie
    Cai, Qinghai
    Zhao, Jingxiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (02) : 1240 - 1251
  • [2] Recent Developments of Dual Single-Atom Catalysts for Nitrogen Reduction Reaction
    Liang, Mengfang
    Shao, Xiaodong
    Lee, Hyoyoung
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (02)
  • [3] Screening transition metal and nonmetal atoms co-doped graphyne as efficient single-atom catalysts for nitrogen reduction
    Li, Shu-Long
    Peng, Ming
    Song, Yu
    Chen, Yutao
    Qiao, Liang
    Feng, Yong
    Zhao, Yong
    Gan, Li-Yong
    CHEMICAL ENGINEERING JOURNAL, 2024, 495
  • [4] A coordination environment effect of single-atom catalysts on their nitrogen reduction reaction performance
    Han, Miaomiao
    Huang, Youjie
    Zhang, Haimin
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (31) : 18854 - 18859
  • [5] Rational Design of Single-Atom Catalysts for Enhanced Electrocatalytic Nitrogen Reduction Reaction
    Agarwal, Sakshi
    Kumar, Ritesh
    Arya, Rakesh
    Singh, Abhishek K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (23) : 12585 - 12593
  • [6] Transition metal-tetracyanoquinodimethane monolayers as single-atom catalysts for the electrocatalytic nitrogen reduction reaction
    Ying, Yiran
    Fan, Ke
    Luo, Xin
    Qiao, Jinli
    Huang, Haitao
    MATERIALS ADVANCES, 2020, 1 (05): : 1285 - 1292
  • [7] Nitrogen reduction reaction enhanced by single-atom transition metal catalysts on functionalized graphene: A first-principles study
    Senthamaraikannan, Thillai Govindaraja
    Lim, Dong-Hee
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 72 : 449 - 461
  • [8] Controlling the Selectivity of Electrocatalytic NO Reduction through pH and Potential Regulation on Single-Atom Catalysts
    Qian, Sheng-Jie
    Cao, Hao
    Wang, Yang-Gang
    Li, Jun
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (18) : 12530 - 12537
  • [9] Screening of transition metal single-atom catalysts doped on γ-graphyne-like BN sheet for efficient nitrogen reduction reaction
    Li, Tongtong
    Wu, Yibo
    Pei, Mengying
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 908
  • [10] Regulating the Coordination Environment of Single-Atom Catalysts Anchored on Thiophene Linked Porphyrin for an Efficient Nitrogen Reduction Reaction
    Sathishkumar, Nadaraj
    Chen, Hsin-Tsung
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (12) : 15545 - 15560