Marcinkiewicz spaces with variable exponents

被引:0
作者
Xia, Liuye [1 ]
Han, Yingxiao [1 ]
Fang, Mi [1 ]
Gao, Hongya [1 ]
机构
[1] Hebei Univ, Coll Math & Informat Sci, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
Marcinkiewicz space; variable exponent; quasi-normed linear space;
D O I
10.1515/gmj-2024-2040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Marcinkiewicz spaces with variable exponents are defined and some basic properties are given.
引用
收藏
页码:339 / 347
页数:9
相关论文
共 12 条
[1]  
Bag T., 2014, J FUZZY MATH, V22, P669
[2]  
Boccardo L., 2014, Elliptic Partial Differential Equations
[3]   Sobolev embedding theorems for spaces Wk,p(x)(Ω) [J].
Fan, XL ;
Shen, JS ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (02) :749-760
[4]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446
[5]  
Israfilov D. M., 2006, IBSU SCI J, V1, P171
[6]   Lorentz spaces with variable exponents [J].
Kempka, Henning ;
Vybiral, Jan .
MATHEMATISCHE NACHRICHTEN, 2014, 287 (8-9) :938-954
[7]  
Kovalevsky A. A., 2016, SINGULAR SOLUTIONS N
[8]  
Liang S, 2022, MEDITERR J MATH, V19, DOI 10.1007/s00009-022-02176-2
[9]   Lorentz estimates to nonlinear elliptic obstacle problems of p(x)-growth in Reifenberg domains [J].
Liang, Shuang ;
Zheng, Shenzhou .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)
[10]  
Samko, 2008, FRACT CALC APPL ANAL, V11, P407