Parameter Identification of Doubly Fed Induction Generator (DFIG) using Particle Swarm Optimization (PSO) algorithm

被引:0
作者
Mohammed, Bakari [1 ]
Zohra, A. R. A. M. A. Fatima [1 ]
Omar, Ouledali [1 ]
机构
[1] Univ Adrar, Dept Elect Engn, Lab LDDI, Adrar, Algeria
来源
PRZEGLAD ELEKTROTECHNICZNY | 2024年 / 100卷 / 09期
关键词
Doubly fed induction generator (DFIG); parameter identification; classic test; Particle Swarm Optimization (PSO);
D O I
10.15199/48.2024.09.51
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The objective of this study is to determine the parameters of the doubly fed induction generator (DFIG), which is a crucial first step in wind turbine power generation. This research focuses on understanding the dynamics of the DFIG system and aims to develop more precise control systems for network movement and the exchange of active and reactive energy, especially at high speeds in this domain. This research utilizes the particle swarm optimization (PSO) approach to perform DFIG parametric identification. The model simulation is adapted to the identical settings in the MATLAB/Simulink software environment. The identification findings of the "PSO" method are compared to those of traditional testing and validated based on their accuracy and convergence to the energy source values obtained by the dSPACE panel. The findings obtained using the "PSO" algorithm demonstrate superior effectiveness and performance compared to the conventional identification approach.
引用
收藏
页码:261 / 266
页数:6
相关论文
共 50 条
  • [31] A Novel Crow Swarm Optimization Algorithm (CSO) Coupling Particle Swarm Optimization (PSO) and Crow Search Algorithm (CSA)
    Jia, Ying-Hui
    Qiu, Jun
    Ma, Zhuang-Zhuang
    Li, Fang-Fang
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [32] Generator Excitation System Parameter Identification and Tuning by Using PSO
    Kittiwattanaphon, Sapanan
    Wangdee, Wijarn
    Katithummarugs, Siriporn
    2019 7TH INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON 2019), 2019,
  • [33] Optimal Coordination of Over-current Relay Using Particle Swarm Optimization (PSO) Algorithm
    Choudhary, Pankaj Kumar
    Das, Dushmanta Kumar
    PROCEEDINGS OF 2020 IEEE APPLIED SIGNAL PROCESSING CONFERENCE (ASPCON 2020), 2020, : 308 - 312
  • [34] Particle Swarm Optimization (PSO) Based Topology Optimization of Part Design with Fuzzy Parameter Tuning
    Lu, Jianan
    Chen, Yonghua
    Computer-Aided Design and Applications, 2014, 11 (01): : 62 - 68
  • [35] Energy-Preserving Chaotic Particle Swarm Optimization Algorithm with Application in Parameter Identification in Bioprocess
    Yu Tao
    Liu Shaofei
    Wang Jianlin
    Zhao Liqiang
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 2246 - 2251
  • [36] Parameter Identification of Hybrid Electric Ship Transmission System Based on Particle Swarm Optimization Algorithm
    Chen, Feiyu
    Yang, Zhangbin
    Cai, Hang
    Zhu, Fenglei
    Deng, Xiangtian
    2024 IEEE 2ND INTERNATIONAL CONFERENCE ON POWER SCIENCE AND TECHNOLOGY, ICPST 2024, 2024, : 625 - 629
  • [37] Parameter Identification of Hysteresis Model with Improved Particle Swarm Optimization
    Ye, Meiying
    Wang, Xiaodong
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 415 - +
  • [38] Solving Parameter Identification Problem by Hybrid Particle Swarm Optimization
    Zahara, Erwie
    Liu, An
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 36 - +
  • [39] Optimal operation of induction motors using artificial neural network based on particle swarm optimization (PSO)
    Hamid, Radwan H. A.
    Amin, Amr M. A.
    Ahmed, Refaat S.
    El-Gammal, Adel A. A.
    2006 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-6, 2006, : 68 - +
  • [40] An Efficient Direct Torque Control Strategy for a Doubly Fed Induction Generator (DFIG) in Wind Energy Conversation Systems
    Parivar, Hossein
    Shivaie, Mojtaba
    Darahi, Ahmad
    Ansari, Meisam
    2021 IEEE TEXAS POWER AND ENERGY CONFERENCE (TPEC), 2021, : 19 - 23