Parameter Identification of Doubly Fed Induction Generator (DFIG) using Particle Swarm Optimization (PSO) algorithm

被引:0
作者
Mohammed, Bakari [1 ]
Zohra, A. R. A. M. A. Fatima [1 ]
Omar, Ouledali [1 ]
机构
[1] Univ Adrar, Dept Elect Engn, Lab LDDI, Adrar, Algeria
来源
PRZEGLAD ELEKTROTECHNICZNY | 2024年 / 100卷 / 09期
关键词
Doubly fed induction generator (DFIG); parameter identification; classic test; Particle Swarm Optimization (PSO);
D O I
10.15199/48.2024.09.51
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The objective of this study is to determine the parameters of the doubly fed induction generator (DFIG), which is a crucial first step in wind turbine power generation. This research focuses on understanding the dynamics of the DFIG system and aims to develop more precise control systems for network movement and the exchange of active and reactive energy, especially at high speeds in this domain. This research utilizes the particle swarm optimization (PSO) approach to perform DFIG parametric identification. The model simulation is adapted to the identical settings in the MATLAB/Simulink software environment. The identification findings of the "PSO" method are compared to those of traditional testing and validated based on their accuracy and convergence to the energy source values obtained by the dSPACE panel. The findings obtained using the "PSO" algorithm demonstrate superior effectiveness and performance compared to the conventional identification approach.
引用
收藏
页码:261 / 266
页数:6
相关论文
共 50 条
  • [1] Particle Swarm Optimization for Discrete-Time Inverse Optimal Control of a Doubly Fed Induction Generator
    Ruiz-Cruz, Riemann
    Sanchez, Edgar N.
    Ornelas-Tellez, Fernando
    Loukianov, Alexander G.
    Harley, Ronald G.
    IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (06) : 1698 - 1709
  • [2] An Intelligent Parameter Identification Method of DFIG Systems Using Hybrid Particle Swarm Optimization and Reinforcement Learning
    Xiang, Xuanchen
    Diao, Ruisheng
    Bernadin, Shonda
    Foo, Simon Y.
    Sun, Fangyuan
    Ogundana, Ayodeji S.
    IEEE ACCESS, 2024, 12 (44080-44090) : 44080 - 44090
  • [3] Parameter identification of transmission chain for doubly-fed wind turbine based on improved particle swarm optimization
    Li H.
    Wu Y.
    Xie X.
    Chai Z.
    Gong L.
    Lu M.
    Li, Hui (cqulh@163.com), 1600, Science Press (42): : 134 - 142
  • [4] Parameter identification of a cage induction motor using particle swarm optimization
    Nikranajbar, A.
    Ebrahimi, M. K.
    Wood, A. S.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2010, 224 (I5) : 479 - 491
  • [5] On line parameter identification of an induction motor, using improved particle swarm optimization
    Chen Guangyi
    Wei, Guo
    Huang Kaisheng
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 5, 2007, : 745 - +
  • [6] Parameter identification of induction motor based on particle swarm optimization
    Picardi, C.
    Rogano, N.
    2006 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION, VOLS 1-3, 2006, : 968 - +
  • [7] Full-Parameter Identification Model Based on Back Propagation Algorithm for Brushless Doubly Fed Induction Generator
    Su, Jingyuan
    Chen, Yu
    Zhang, Debin
    Kang, Yong
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (10) : 9953 - 9958
  • [8] Parameter identification of nonlinear systems using a particle swarm optimization approach
    Chang, Wei-Der
    Cheng, Jun-Ping
    Hsu, Ming-Chieh
    Tsai, Liang-Chan
    2012 THIRD INTERNATIONAL CONFERENCE ON NETWORKING AND COMPUTING (ICNC 2012), 2012, : 113 - 117
  • [9] Power System Oscillation Damping Capability of Doubly Fed Induction Generator (DFIG)
    Gurung, Niroj
    Kamalasadan, Sukumar
    2018 IEEE/PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXPOSITION (T&D), 2018,
  • [10] Equivalent model of doubly-fed wind turbine generator systems based on auto mutation particle swarm optimization algorithm
    State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003, China
    Tang, F. (tangfan19861012@126.com), 1600, Automation of Electric Power Systems Press (36): : 22 - 27