UPFL: Unsupervised Personalized Federated Learning towards New Clients

被引:0
|
作者
Ye, Tiandi [1 ]
Chen, Cen [1 ]
Wang, Yinggui [2 ]
Li, Xiang [1 ]
Gao, Ming [1 ]
机构
[1] East China Normal Univ, Shanghai, Peoples R China
[2] Ant Grp, Hangzhou, Peoples R China
来源
PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM | 2024年
基金
中国国家自然科学基金;
关键词
personalized federated learning; unsupervised learning; heterogeneous federated learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Personalized federated learning (pFL) has gained significant attention as a promising approach to address the challenge of data heterogeneity. In this paper, we address a relatively unexplored problem in federated learning. When a federated model has been trained and deployed, and an unlabeled new client joins, providing a personalized model for the new client becomes a highly challenging task. To address this challenge, we extend the adaptive risk minimization technique into the unsupervised pFL setting and propose our method, FedTTA. We further improve FedTTA with two simple yet highly effective optimization strategies: enhancing the training of the adaptation model with proxy regularization and early-stopping the adaptation through entropy. Moreover, we propose a knowledge distillation loss specifically designed for FedTTA to address the device heterogeneity. Extensive experiments on five datasets against eleven baselines demonstrate the effectiveness of our proposed FedTTA and its variants. The code is available at: https://github.com/anonymous-federated-learning/code.
引用
收藏
页码:851 / 859
页数:9
相关论文
共 50 条
  • [31] A Personalized Federated Learning Algorithm Based on Dynamic Weight Allocation
    Liu, Yazhi
    Li, Siwei
    Li, Wei
    Qian, Hui
    Xia, Haonan
    ELECTRONICS, 2025, 14 (03):
  • [32] FedFV: A Personalized Federated Learning Framework for Finger Vein Authentication
    Lian, Feng-Zhao
    Huang, Jun-Duan
    Liu, Ji-Xin
    Chen, Guang
    Zhao, Jun-Hong
    Kang, Wen-Xiong
    MACHINE INTELLIGENCE RESEARCH, 2023, 20 (05) : 683 - 696
  • [33] Personalized Federated Learning with Robust Clustering Against Model Poisoning
    Ma, Jie
    Xie, Ming
    Long, Guodong
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2022, PT II, 2022, 13726 : 238 - 252
  • [34] Household profile identification for retailers based on personalized federated learning
    Liu, Yixing
    Liu, Bo
    Guo, Xiaoyu
    Xu, Yiqiao
    Ding, Zhengtao
    ENERGY, 2023, 275
  • [35] Predicting the Prognosis of Stroke Patients Based on Personalized Federated Learning
    Yang, Jie
    Xie, Haoyu
    Huang, Lianfen
    Gao, Zhibin
    Shen, Shaowei
    JOURNAL OF INTERNET TECHNOLOGY, 2024, 25 (06): : 815 - 824
  • [36] Revisiting Personalized Federated Learning: Robustness Against Backdoor Attacks
    Qin, Zeyu
    Yao, Liuyi
    Chen, Daoyuan
    Li, Yaliang
    Ding, Bolin
    Cheng, Minhao
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 4743 - 4755
  • [37] Personalized federated learning framework for network traffic anomaly detection
    Pei, Jiaming
    Zhong, Kaiyang
    Jan, Mian Ahmad
    Li, Jinhai
    COMPUTER NETWORKS, 2022, 209
  • [38] Data Heterogeneity-Aware Personalized Federated Learning for Diagnosis
    Lin, Huiyan
    Li, Heng
    Jin, Haojin
    Yu, Xiangyang
    Yu, Kuai
    Liang, Chenhao
    Fu, Huazhu
    Liu, Jiang
    OPHTHALMIC MEDICAL IMAGE ANALYSIS, OMIA 2024, 2025, 15188 : 53 - 62
  • [39] PPFed: A Privacy-Preserving and Personalized Federated Learning Framework
    Zhang, Guangsheng
    Liu, Bo
    Zhu, Tianqing
    Ding, Ming
    Zhou, Wanlei
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19380 - 19393
  • [40] Connecting Low-Loss Subspace for Personalized Federated Learning
    Hahn, Seok-Ju
    Jeong, Minwoo
    Lee, Junghye
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 505 - 515