UPFL: Unsupervised Personalized Federated Learning towards New Clients

被引:0
|
作者
Ye, Tiandi [1 ]
Chen, Cen [1 ]
Wang, Yinggui [2 ]
Li, Xiang [1 ]
Gao, Ming [1 ]
机构
[1] East China Normal Univ, Shanghai, Peoples R China
[2] Ant Grp, Hangzhou, Peoples R China
来源
PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM | 2024年
基金
中国国家自然科学基金;
关键词
personalized federated learning; unsupervised learning; heterogeneous federated learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Personalized federated learning (pFL) has gained significant attention as a promising approach to address the challenge of data heterogeneity. In this paper, we address a relatively unexplored problem in federated learning. When a federated model has been trained and deployed, and an unlabeled new client joins, providing a personalized model for the new client becomes a highly challenging task. To address this challenge, we extend the adaptive risk minimization technique into the unsupervised pFL setting and propose our method, FedTTA. We further improve FedTTA with two simple yet highly effective optimization strategies: enhancing the training of the adaptation model with proxy regularization and early-stopping the adaptation through entropy. Moreover, we propose a knowledge distillation loss specifically designed for FedTTA to address the device heterogeneity. Extensive experiments on five datasets against eleven baselines demonstrate the effectiveness of our proposed FedTTA and its variants. The code is available at: https://github.com/anonymous-federated-learning/code.
引用
收藏
页码:851 / 859
页数:9
相关论文
共 50 条
  • [1] Federated unsupervised representation learning
    Zhang, Fengda
    Kuang, Kun
    Chen, Long
    You, Zhaoyang
    Shen, Tao
    Xiao, Jun
    Zhang, Yin
    Wu, Chao
    Wu, Fei
    Zhuang, Yueting
    Li, Xiaolin
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2023, 24 (08) : 1181 - 1193
  • [2] Calibre: Towards Fair and Accurate Personalized Federated Learning with Self-Supervised Learning
    Chen, Sijia
    Su, Ningxin
    Li, Baochun
    2024 IEEE 44TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, ICDCS 2024, 2024, : 891 - 901
  • [3] Unsupervised Federated Learning for Unbalanced Data
    Servetnyk, Mykola
    Fung, Carrson C.
    Han, Zhu
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [4] Gradient Free Personalized Federated Learning
    Chen, Haoyu
    Zhang, Yuxin
    Zhao, Jin
    Wang, Xin
    Xu, Yuedong
    53RD INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, ICPP 2024, 2024, : 971 - 980
  • [5] Clustered Graph Federated Personalized Learning
    Gauthier, Francois
    Gogineni, Vinay Chakravarthi
    Werner, Stefan
    Huang, Yih-Fang
    Kuh, Anthony
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 744 - 748
  • [6] Practical Vertical Federated Learning With Unsupervised Representation Learning
    Wu, Zhaomin
    Li, Qinbin
    He, Bingsheng
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (06) : 864 - 878
  • [7] Networked Personalized Federated Learning Using Reinforcement Learning
    Gauthier, Francois
    Gogineni, Vinay Chakravarthi
    Werner, Stefan
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4397 - 4402
  • [8] RECALL: Towards Generalized Representations in Unsupervised Federated Learning Under Non-IID Conditions
    Chen, Pi-Wei
    Lin, Jerry Chun-Wei
    Yeh, Feng-Hao
    Cupek, Rafal
    Chen, Chao-Chun
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT I, ACIIDS 2024, 2024, 14795 : 253 - 263
  • [9] A lightweight and personalized edge federated learning model
    Peiyan Yuan
    Ling Shi
    Xiaoyan Zhao
    Junna Zhang
    Complex & Intelligent Systems, 2024, 10 : 3577 - 3592
  • [10] A lightweight and personalized edge federated learning model
    Yuan, Peiyan
    Shi, Ling
    Zhao, Xiaoyan
    Zhang, Junna
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (03) : 3577 - 3592