Stability properties of some port-Hamiltonian SPDEs

被引:0
|
作者
Kuchling, Peter [1 ]
Rudiger, Barbara [2 ]
Ugurcan, Baris [2 ]
机构
[1] Univ Appl Sci & Arts, Fac Engn & Math, Bielefeld, Germany
[2] Univ Wuppertal, Sch Math & Nat Sci, Dept Math & Informat, Gaussstr 20, D-42119 Wuppertal, Germany
关键词
Port-Hamiltonian system; invariant measure; mild solution; L & eacute; vy noise; stochastic partial differential equation; GLAUBER EVOLUTION; KAC POTENTIALS; EXISTENCE;
D O I
10.1080/17442508.2024.2387773
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the existence and uniqueness of invariant measures of a class of stochastic partial differential equations with Gaussian and Poissonian noise and its exponential convergence. This class especially includes a case of stochastic port-Hamiltonian equations.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Port-Hamiltonian FE models for filaments
    Thoma, Tobias
    Kotyczka, Paul
    IFAC PAPERSONLINE, 2022, 55 (30): : 353 - 358
  • [32] PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY
    Camlibel, M. K.
    Van der Schaftdagger, A. J.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (04) : 2193 - 2221
  • [33] Port-Hamiltonian flexible multibody dynamics
    Andrea Brugnoli
    Daniel Alazard
    Valérie Pommier-Budinger
    Denis Matignon
    Multibody System Dynamics, 2021, 51 : 343 - 375
  • [34] An Overview on Irreversible Port-Hamiltonian Systems
    Ramirez, Hector
    Le Gorrec, Yann
    ENTROPY, 2022, 24 (10)
  • [35] OPTIMAL ROBUSTNESS OF PORT-HAMILTONIAN SYSTEMS
    Mehrmann, Volker
    Van Dooren, Paul M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (01) : 134 - 151
  • [36] Port-Hamiltonian Formulation of Systems With Memory
    Jeltsema, Dimitri
    Doria-Cerezo, Arnau
    PROCEEDINGS OF THE IEEE, 2012, 100 (06) : 1928 - 1937
  • [37] A STRUCTURAL OBSERVATION ON PORT-HAMILTONIAN SYSTEMS
    Picard, Rainer H.
    Trostorff, Sascha
    Watson, Bruce
    Waurick, Marcus
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (02) : 511 - 535
  • [38] On Energy Conversion in Port-Hamiltonian Systems
    van der Schaft, Arjan
    Jeltsema, Dimitri
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2421 - 2427
  • [39] Generalized port-Hamiltonian DAE systems
    van der Schaft, Arjan
    Maschke, Bernhard
    SYSTEMS & CONTROL LETTERS, 2018, 121 : 31 - 37
  • [40] The piston problem in a port-Hamiltonian formalism
    Lequeurre, Julien
    Tucsnak, Marius
    IFAC PAPERSONLINE, 2015, 48 (13): : 212 - 216