Stability properties of some port-Hamiltonian SPDEs

被引:0
作者
Kuchling, Peter [1 ]
Rudiger, Barbara [2 ]
Ugurcan, Baris [2 ]
机构
[1] Univ Appl Sci & Arts, Fac Engn & Math, Bielefeld, Germany
[2] Univ Wuppertal, Sch Math & Nat Sci, Dept Math & Informat, Gaussstr 20, D-42119 Wuppertal, Germany
关键词
Port-Hamiltonian system; invariant measure; mild solution; L & eacute; vy noise; stochastic partial differential equation; GLAUBER EVOLUTION; KAC POTENTIALS; EXISTENCE;
D O I
10.1080/17442508.2024.2387773
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the existence and uniqueness of invariant measures of a class of stochastic partial differential equations with Gaussian and Poissonian noise and its exponential convergence. This class especially includes a case of stochastic port-Hamiltonian equations.
引用
收藏
页数:15
相关论文
共 22 条
  • [1] Existence of mild solutions for stochastic differential equations and semilinear equations with non-Gaussian Levy noise
    Albeverioa, S.
    Mandrekar, V.
    Ruediger, B.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (03) : 835 - 863
  • [2] Da Prato G., 2014, Stochastic Equations in Infinite Dimensions, DOI 10.1017/CBO9780511666223
  • [3] DeMasi A, 1996, NONLINEARITY, V9, P27, DOI 10.1088/0951-7715/9/1/002
  • [4] DEMASI A, 1994, NONLINEARITY, V7, P633, DOI 10.1088/0951-7715/7/3/001
  • [5] Duindam V, 2009, MODELING AND CONTROL OF COMPLEX PHYSICAL SYSTEMS: THE PORT-HAMILTONIAN APPROACH, P1, DOI 10.1007/978-3-642-03196-0
  • [6] Stabilization of Input-Disturbed Stochastic Port-Hamiltonian Systems Via Passivity
    Fang, Zhou
    Gao, Chuanhou
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) : 4159 - 4166
  • [7] On a class of stochastic partial differential equations with multiple invariant measures
    Farkas, Balint
    Friesen, Martin
    Rudiger, Barbara
    Schroers, Dennis
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (03):
  • [8] Jump-diffusions in Hilbert spaces: existence, stability and numerics
    Filipovic, Damir
    Tappe, Stefan
    Teichmann, Josef
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2010, 82 (05) : 475 - 520
  • [9] Giacomin G., 1999, MATH SURVEYS MONOGR, V64, P107
  • [10] EXISTENCE OF SOLUTIONS FOR FIRST-ORDER HAMILTONIAN RANDOM IMPULSIVE DIFFERENTIAL EQUATIONS WITH DIRICHLET BOUNDARY CONDITIONS
    Guo, Yu
    Shu, Xiao-Bao
    Yin, Qianbao
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (08): : 4455 - 4471