Stability properties of some port-Hamiltonian SPDEs

被引:0
|
作者
Kuchling, Peter [1 ]
Rudiger, Barbara [2 ]
Ugurcan, Baris [2 ]
机构
[1] Univ Appl Sci & Arts, Fac Engn & Math, Bielefeld, Germany
[2] Univ Wuppertal, Sch Math & Nat Sci, Dept Math & Informat, Gaussstr 20, D-42119 Wuppertal, Germany
关键词
Port-Hamiltonian system; invariant measure; mild solution; L & eacute; vy noise; stochastic partial differential equation; GLAUBER EVOLUTION; KAC POTENTIALS; EXISTENCE;
D O I
10.1080/17442508.2024.2387773
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the existence and uniqueness of invariant measures of a class of stochastic partial differential equations with Gaussian and Poissonian noise and its exponential convergence. This class especially includes a case of stochastic port-Hamiltonian equations.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] On the stability of port-Hamiltonian descriptor systems
    Gernandt, Hannes
    Haller, Frederic E.
    IFAC PAPERSONLINE, 2021, 54 (19): : 137 - 142
  • [2] On the Port-Hamiltonian Models of some Electrochemical Processes
    Sbarbaro, Daniel
    IFAC PAPERSONLINE, 2018, 51 (03): : 38 - 43
  • [3] STABILITY AND PASSIVITY FOR A CLASS OF DISTRIBUTED PORT-HAMILTONIAN NETWORKS
    Gernandt, Hannes
    Hinsen, Dorothea
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (06) : 2936 - 2962
  • [4] Stability Analysis of Repetitive Control: the Port-Hamiltonian Approach
    Califano, Federico
    Macchelli, Alessandro
    Melchiorri, Claudio
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [5] Stability of the multidimensional wave equation in port-Hamiltonian modelling
    Jacob, Birgit
    Skrepek, Nathanael
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 6188 - 6193
  • [6] Asymptotic stability of port-hamiltonian systems with constant inputs
    Cai, Liangcheng
    CONTROL THEORY AND TECHNOLOGY, 2021, 19 (02) : 227 - 235
  • [7] Asymptotic stability of port-hamiltonian systems with constant inputs
    Liangcheng Cai
    Control Theory and Technology, 2021, 19 : 227 - 235
  • [8] Some notes on port-Hamiltonian systems on Banach spaces
    Reis, Timo
    IFAC PAPERSONLINE, 2021, 54 (19): : 223 - 229
  • [9] Stochastic Port-Hamiltonian Systems
    Francesco Cordoni
    Luca Di Persio
    Riccardo Muradore
    Journal of Nonlinear Science, 2022, 32
  • [10] Asymptotic Stability of Forced Equilibria for Distributed Port-Hamiltonian Systems
    Macchelli, Alessandro
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 2934 - 2939