ScAlInN/GaN heterostructures grown by molecular beam epitaxy

被引:0
作者
Ye, Haotian [1 ]
Wang, Rui [1 ]
Yang, Liuyun [1 ]
Wang, Jinlin [1 ]
Wang, Tao [1 ,2 ]
Feng, Ran [1 ]
Xu, Xifan [1 ]
Lee, Wonseok [1 ]
Wang, Ping [1 ]
Wang, Xinqiang [1 ]
机构
[1] Peking Univ, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Electron Microscopy Lab, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
SCALN; TEMPERATURE; PERFORMANCE; ALLOY;
D O I
10.1063/5.0228747
中图分类号
O59 [应用物理学];
学科分类号
摘要
Rare-earth (RE) elements doped III-nitride semiconductors have garnered attention for their potential in advanced high-frequency and high-power electronic applications. We report on the molecular beam epitaxy of quaternary alloy ScAlInN, which is an encouraging strategy to improve the heterointerface quality when grown at relatively low temperatures. Monocrystalline wurtzite phase and uniform domain structures are achieved in ScAlInN/GaN heterostructures, featuring atomically sharp interface. ScAlInN (the Sc content in the ScAlN fraction is 14%) films with lower In contents (less than 6%) are nearly lattice matched to GaN, exhibiting negligible in-plane strain, which are excellent barrier layer candidates for GaN high electron mobility transistors (HEMTs). Using a 15-nm-thick Sc0.13Al0.83In0.04N as a barrier layer in GaN HEMT, a two-dimensional electron gas density of 4.00 x 10(13) cm(-2) and a Hall mobility of 928 cm(2)/V s, with a corresponding sheet resistance of 169 Omega/square, have been achieved. This work underscores the potential of alloy engineering to adjust lattice parameters, bandgap, polarization, interfaces, and strain in emerging RE-III-nitrides, paving the way for their use in next-generation optoelectronic, electronic, acoustic, and ferroelectric applications.
引用
收藏
页数:7
相关论文
共 48 条
  • [1] Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering
    Akiyama, Morito
    Kamohara, Toshihiro
    Kano, Kazuhiko
    Teshigahara, Akihiko
    Takeuchi, Yukihiro
    Kawahara, Nobuaki
    [J]. ADVANCED MATERIALS, 2009, 21 (05) : 593 - +
  • [2] Wurtzite ScAlN, InAlN, and GaAlN crystals, a comparison of structural, elastic, dielectric, and piezoelectric properties
    Ambacher, O.
    Christian, B.
    Feil, N.
    Urban, D. F.
    Elsaesser, C.
    Prescher, M.
    Kirste, L.
    [J]. JOURNAL OF APPLIED PHYSICS, 2021, 130 (04)
  • [3] Averbeck R., 1999, Phys. Status Solidi A, V176, P301, DOI [10.1002/(SICI)1521-396X(199911)176:1<301::AID-PSSA301>3.0.CO
  • [4] 2-H, DOI 10.1002/(SICI)1521-396X(199911)176:1<301::AID-PSSA301>3.0.CO
  • [5] 2-H]
  • [6] Polarization Properties of Wurtzite III-Nitride Alloys Using the Hexagonal Reference Structure
    Benbedra, Abdesamed
    Meskine, Said
    Boukortt, Abdelkader
    Abbassa, Hamza
    Abbes, El Habib
    [J]. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2023, 12 (10)
  • [7] Structural and piezoelectric properties of ultra-thin ScxAl1-xN films grown on GaN by molecular beam epitaxy
    Casamento, Joseph
    Chang, Celesta S.
    Shao, Yu-Tsun
    Wright, John
    Muller, David A.
    Xing, Huili
    Jena, Debdeep
    [J]. APPLIED PHYSICS LETTERS, 2020, 117 (11)
  • [8] Lattice parameters of ScxAl1-xN layers grown on GaN(0001) by plasma-assisted molecular beam epitaxy
    Dinh, Duc V.
    Laehnemann, Jonas
    Geelhaar, Lutz
    Brandt, Oliver
    [J]. APPLIED PHYSICS LETTERS, 2023, 122 (15)
  • [9] Elimination of remnant phases in low-temperature growth of wurtzite ScAlN by molecular-beam epitaxy
    Dzuba, Brandon
    Nguyen, Trang
    Sen, Amrita
    Diaz, Rosa E.
    Dubey, Megha
    Bachhav, Mukesh
    Wharry, Janelle P.
    Manfra, Michael J.
    Malis, Oana
    [J]. JOURNAL OF APPLIED PHYSICS, 2022, 132 (17)
  • [10] Influence of the temperature on growth by ammonia source molecular beam epitaxy of wurtzite phase ScAlN alloy on GaN
    Elias, Caroline
    Nemoz, Maud
    Rotella, Helene
    Georgi, Frederic
    Vezian, Stephane
    Hugues, Maxime
    Cordier, Yvon
    [J]. APL MATERIALS, 2023, 11 (03)