Microstructure and properties of additive manufacturing by gas-shielded arc welding with hydrogen-resistant steel wires

被引:0
作者
Chun, Guo [1 ]
Xinyu, Zhang [1 ]
Wenqing, Li [1 ]
Yun, Li [1 ]
Yanyan, Chen [1 ]
Guangcan, Huang [1 ]
Qingcheng, Lin [1 ]
机构
[1] Anhui Sci & Technol Univ, Coll Mech Engn, Huainan 233100, Peoples R China
关键词
WAAM; Hydrogen-resistant steel gas-shielded welding wire; Microstructure; Properties;
D O I
10.1007/s40194-024-01835-0
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The hydrogen steel gas-shielded welding wire was utilized in the WAAM technique, and the microstructure, crystal structure, and properties of the parts generated by layer-wise deposition were analyzed and evaluated. The study revealed that the components exhibit good quality, devoid of significant defects, and demonstrate robust internal metallurgical bonding. The metallographic structure mainly consists of pearlite and ferrite. The distribution of microhardness in the parts is fairly consistent, with mean microhardness values of 196.6 HV0.1 (transverse) and 196.7 HV0.1 (longitudinal). The parts exhibit exceptional mechanical properties, with a transverse yield strength of 406 MPa, an elongation rate of 14.2%, and a longitudinal yield strength of 380 MPa, an elongation rate of 18.9%. At - 30 degrees C, the average transverse Charpy impact value is 95.7 J, and the average longitudinal is 117 J.
引用
收藏
页码:3085 / 3097
页数:13
相关论文
共 30 条
[1]   Dissimilar metal deposition with a stainless steel and nickel-based alloy using wire and arc-based additive manufacturing [J].
Abe, Takeyuki ;
Sasahara, Hiroyuki .
PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2016, 45 :387-395
[2]   Bending fatigue properties of structural steel fabricated through wire arc additive manufacturing (WAAM) [J].
Ayan, Yusuf ;
Kahraman, Nizamettin .
ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2022, 35
[3]   Joining by forming technologies: current solutions and future trends [J].
Buffa, G. ;
Fratini, L. ;
La Commare, U. ;
Roemisch, D. ;
Wiesenmayer, S. ;
Wituschek, S. ;
Merklein, M. .
INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2022, 15 (03)
[4]   Wire Arc Additive Manufacturing: Review on Recent Findings and Challenges in Industrial Applications and Materials Characterization [J].
Chaturvedi, Mukti ;
Scutelnicu, Elena ;
Rusu, Carmen Catalina ;
Mistodie, Luigi Renato ;
Mihailescu, Danut ;
Subbiah, Arungalai Vendan .
METALS, 2021, 11 (06)
[5]   Enhanced strength-ductility synergy of bimetallic laminated steel structure of 304 stainless steel and low-carbon steel fabricated by wire and arc additive manufacturing [J].
Chen, Yi ;
Zuo, Xinde ;
Zhang, Wei ;
Hao, Zhizhuang ;
Li, Yang ;
Luo, Zhen ;
Ao, Sansan .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 856
[6]   Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel [J].
Das, Arpan ;
Tarafder, Soumitra .
INTERNATIONAL JOURNAL OF PLASTICITY, 2009, 25 (11) :2222-2247
[7]   Digitisation of metal AM for part microstructure and property control [J].
Dogu, Merve Nur ;
McCarthy, Eanna ;
McCann, Ronan ;
Mahato, Vivek ;
Caputo, Annalina ;
Bambach, Markus ;
Ul Ahad, Inam ;
Brabazon, Dermot .
INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2022, 15 (03)
[8]   Multiscale analysis of grain boundary microstructure in high strength 7xxx Al alloys [J].
Garner, Alistair ;
Euesden, Ryan ;
Yao, Yichao ;
Aboura, Yasser ;
Zhao, Huan ;
Donoghue, Jack ;
Curioni, Michele ;
Gault, Baptiste ;
Shanthraj, Pratheek ;
Barrett, Zak ;
Engel, Christian ;
Burnett, Tim L. ;
Prangnell, Phil B. .
ACTA MATERIALIA, 2021, 202 :190-210
[9]   Microstructure and mechanical behavior of PH 13–8Mo martensitic stainless steel fabricated by wire arc additive manufacturing [J].
Ghaffari M. ;
Vahedi Nemani A. ;
Nasiri A. .
Additive Manufacturing, 2022, 49
[10]  
Gibson I., 2021, Additive Manufacturing Technologies, DOI DOI 10.1007/978-3-030-56127-7