Spectroscopic and sensory characterization of Brazilian Coffea canephora terroir and botanical varieties produced in the Amazon and Espirito Santo implementing multi-block approaches

被引:8
作者
Baqueta, Michel Rocha [1 ,2 ]
Marini, Federico [2 ]
Teixeira, Alexsandro Lara [3 ]
Goulart, Bruno Henrique Fermino [4 ]
Pilau, Eduardo Jorge [4 ]
Valderrama, Patricia [5 ]
Pallone, Juliana Azevedo Lima [1 ]
机构
[1] State Univ Campinas Unicamp, Sch Food Engn, Dept Food Sci & Nutr, Campinas, SP, Brazil
[2] Univ Roma La Sapienza, Dept Chem, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[3] Empresa Brasileira Pesquisa Agr EMBRAPA Rondonia, Porto Velho, RO, Brazil
[4] State Univ Maringa UEM, Chem Dept, BR-87020900 Maringa, PR, Brazil
[5] Univ Tecnol Fed Parana UTFPR, Campo Mourao, PR, Brazil
基金
巴西圣保罗研究基金会; 瑞典研究理事会;
关键词
Brazilian Canephora coffee; Chemometrics; Data fusion; Multi-block data analysis; Multi-source data integration; ROBUSTA COFFEES; COMDIM; ARABICA; PLS;
D O I
10.1016/j.jfca.2024.106442
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Specialty Brazilian Canephora coffees are produced in the Amazon by indigenous and non-indigenous people and in Espirito Santo. Their distinctive quality, origin, and varietal were verified by integrated analytical techniques to understand better their chemical and sensory aspects and protect their origin and traceability. In this context, chemometric multi-block approaches represent a holistic way to integrate the multi-source data and then extract their complementary information. The samples were analyzed by near-infrared (NIR) spectroscopy on portable and benchtop instruments, ultraviolet-visible (UV-Vis) spectroscopy, mass spectrometry, and sensory analysis. Each piece of relevant information was interpreted before being integrated through exploratory data analysis and predictive modelling by multi-block methods. Although subtle, ComDim analysis showed a tendency to separate the indigenous and non-indigenous, and Espirito Santo coffees. Pre-processing ensembles with ROSA calibration (PROSAC) discriminated the three coffees with mean correct classification rate of 91.1 % in the test, using benchtop NIR with 1st derivative, mass spectrometry water spectra with Pareto scaling, and autoscaled sensory data. Sequential and orthogonalized partial least square-linear discriminant analysis (SO-PLS-LDA) performed better than PROSAC, showing 94.2 % of recognition in the test, using benchtop NIR with standard normal variate, mass spectrometry organic spectra with Pareto scaling, and portable NIR with 2nd derivative. Integrating complementary information from different blocks also improves classification accuracy compared to analyzing individual matrices.
引用
收藏
页数:12
相关论文
共 43 条
[1]   The terroir of Brazilian Coffea canephora: Characterization of the chemical composition [J].
Agnoletti, Barbara Zani ;
Pereira, Lucas Louzada ;
Alves, Enrique Anastacio ;
Rocha, Rodrigo Barros ;
Debona, Danieli Gracieri ;
Lyrio, Marcos Valerio Vieira ;
Moreira, Tais Rizzo ;
de Castro, Eustaquio Vinicius Ribeiro ;
Oliveira, Emanuele Catarina da S. ;
Filgueiras, Paulo Roberto .
FOOD RESEARCH INTERNATIONAL, 2024, 176
[2]   Direct infusion electrospray ionization mass spectrometry applied to the detection of forgeries: Roasted coffees adulterated with their husks [J].
Aquino, Francisco J. T. ;
Augusti, Rodinei ;
Alves, Junia de O. ;
Diniz, Maria E. R. ;
Morais, Sergio A. L. ;
Alves, Blyeny H. P. ;
Nascimento, Evandro A. ;
Sabino, Adao A. .
MICROCHEMICAL JOURNAL, 2014, 117 :127-132
[3]   Authentication of the shelf-life and decaffeination process of instant coffee samples using UV-Vis and NIR spectral fingerprints [J].
Araujo, Taynna Kevla Lopes de ;
Lyra, Wellington da Silva ;
da Silva, Jose Domingos Santos ;
Fernandes, David Douglas de Sousa ;
Diniz, Paulo Henrique Goncalves Dias .
FOOD CONTROL, 2024, 155
[4]   A data fusion model merging information from near infrared spectroscopy and X-ray fluorescence. Searching for atomic-molecular correlations to predict and characterize the composition of coffee blends [J].
Assis, Camila ;
Gama, Ednilton Moreira ;
Nascentes, Clesia Cristina ;
de Oliveira, Leandro Soares ;
Anzanello, Michel Jose ;
Sena, Marcelo Martins .
FOOD CHEMISTRY, 2020, 325
[5]   Data handling in data fusion: Methodologies and applications [J].
Azcarate, Silvana M. ;
Rios-Reina, Rocio ;
Amigo, Jose M. ;
Goicoechea, Ector C. .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2021, 143
[6]   Multivariate comparison of classification performance measures [J].
Ballabio, Davide ;
Grisoni, Francesca ;
Todeschini, Roberto .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 174 :33-44
[7]   Authentication and discrimination of new Brazilian Canephora coffees with geographical indication using a miniaturized near-infrared spectrometer [J].
Baqueta, Michel Rocha ;
Marini, Federico ;
Rocha, Rodrigo Barros ;
Valderrama, Patricia ;
Pallone, Juliana Azevedo Lima .
FOOD RESEARCH INTERNATIONAL, 2023, 172
[8]   1H NMR, FAAS, portable NIR, benchtop NIR, and ATR-FTIR-MIR spectroscopies for characterizing and discriminating new Brazilian Canephora coffees in a multi-block analysis perspective [J].
Baqueta, Michel Rocha ;
Valderrama, Patricia ;
Mandrone, Manuela ;
Poli, Ferruccio ;
Coqueiro, Aline ;
Costa-Santos, Augusto Cesar ;
Rebellato, Ana Paula ;
Luz, Gisele Marcondes ;
Rocha, Rodrigo Barros ;
Pallone, Juliana Azevedo Lima ;
Marini, Federico .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2023, 240
[9]   Brazilian Canephora coffee evaluation using NIR spectroscopy and discriminant chemometric techniques [J].
Baqueta, Michel Rocha ;
Alves, Enrique Anastacio ;
Valderrama, Patricia ;
Pallone, Juliana Azevedo Lima .
JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2023, 116
[10]   Application of infrared spectral techniques on quality and compositional attributes of coffee: An overview [J].
Barbin, Douglas Fernandes ;
de Souza Madureira Felicio, Ana Lucia ;
Sun, Da-Wen ;
Nixdorf, Suzana Lucy ;
Hirooka, Elisa Yoko .
FOOD RESEARCH INTERNATIONAL, 2014, 61 :23-32