A theoretical perspective on solid-state ionic interfaces

被引:0
|
作者
Carrasco, Javier [1 ,2 ]
机构
[1] Basque Res & Technol Alliance BRTA, Ctr Cooperat Res Alternat Energies CIC energiGUNE, Alava Technol Pk,Albert Einstein 48, Vitoria 01510, Spain
[2] Basque Fdn Sci, IKERBASQUE, Plaza Euskadi 5, Bilbao 48009, Spain
关键词
solid electrolytes; ionic transport mechanisms; ionic conductors; interfacial dynamics; ab initio modelling; machine learning in materials science; SPACE-CHARGE LAYERS; LI-METAL ANODE; ELECTROLYTE INTERPHASE; CATHODE COATINGS; GRAIN-BOUNDARIES; LITHIUM-METAL; CONDUCTIVITY; TRANSPORT; 1ST-PRINCIPLES; INSIGHTS;
D O I
10.1098/rsta.2023.0313
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solid-state ionic conductors find application across various domains in materials science, particularly showcasing their significance in energy storage and conversion technologies. To effectively utilize these materials in high-performance electrochemical devices, a comprehensive understanding and precise control of charge carriers' distribution and ionic mobility at interfaces are paramount. A major challenge lies in unravelling the atomic-level processes governing ion dynamics within intricate solid and interfacial structures, such as grain boundaries and heterophases. From a theoretical viewpoint, in this Perspective article, my focus is to offer an overview of the current comprehension of key aspects related to solid-state ionic interfaces, with a particular emphasis on solid electrolytes for batteries, while providing a personal critical assessment of recent research advancements. I begin by introducing fundamental concepts for understanding solid-state conductors, such as the classical diffusion model and chemical potential. Subsequently, I delve into the modelling of space-charge regions, which are pivotal for understanding the physicochemical origins of charge redistribution at electrified interfaces. Finally, I discuss modern computational methods, such as density functional theory and machine-learned potentials, which offer invaluable tools for gaining insights into the atomic-scale behaviour of solid-state ionic interfaces, including both ionic mobility and interfacial reactivity aspects.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Polymerizable Ionic Liquids for Solid-State Polymer Electrolytes
    Loewe, Robert
    Hanemann, Thomas
    Hofmann, Andreas
    MOLECULES, 2019, 24 (02)
  • [42] STUDIES OF SUPERCONDUCTING OXIDES WITH A SOLID-STATE IONIC TECHNIQUE
    AHN, BT
    GUR, TM
    HUGGINS, RA
    BEYERS, R
    ENGLER, EM
    GRANT, PM
    PARKIN, SSP
    LIM, G
    RAMIREZ, ML
    ROCHE, KP
    VAZQUEZ, JE
    LEE, VY
    JACOWITZ, RD
    PHYSICA C, 1988, 153 (01): : 590 - 593
  • [43] Organic Ionic Plastic Crystals as Solid-State Electrolytes
    Zhu, Haijin
    MacFarlane, Douglas R.
    Pringle, Jennifer M.
    Forsyth, Maria
    TRENDS IN CHEMISTRY, 2019, 1 (01): : 126 - 140
  • [44] Solid-state electrolytes based on ionic network polymers
    Shaplov, A. S.
    Ponkratov, D. O.
    Vlasov, P. S.
    Lozinskaya, E. I.
    Malyshkina, I. A.
    Vidal, F.
    Aubert, P. -H.
    Armand, M.
    Vygodskii, Ya. S.
    POLYMER SCIENCE SERIES B, 2014, 56 (02) : 164 - 177
  • [45] Solid-State Ionic Rectification in Perovskite Nanowire Heterostructures
    Kong, Qiao
    Obliger, Amael
    Lai, Minliang
    Gao, Mengyu
    Limmer, David T.
    Yang, Peidong
    NANO LETTERS, 2020, 20 (11) : 8151 - 8156
  • [46] CANNON FOR PURIFICATION OF SOLID-STATE SURFACES BY IONIC BOMBARDMENT
    ARTEMOV, VM
    IREMASHV.DV
    SHIMKO, AI
    PRIBORY I TEKHNIKA EKSPERIMENTA, 1973, (01): : 237 - 238
  • [47] Solid-State Ionic Diodes Demonstrated in Conical Nanopores
    Plett, Timothy S.
    Cai, Wenjia
    Le Thai, Mya
    Vlassiouk, Ivan V.
    Penner, Reginald M.
    Siwy, Zuzanna S.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (11): : 6170 - 6176
  • [48] Microwave ponderomotive forces in solid-state ionic plasmas
    Booske, JH
    Cooper, RF
    Freeman, SA
    Rybakov, KI
    Semenov, VE
    PHYSICS OF PLASMAS, 1998, 5 (05) : 1664 - 1670
  • [49] METHANE SYNTHESIS ON NICKEL BY A SOLID-STATE IONIC METHOD
    GUR, TM
    HUGGINS, RA
    SCIENCE, 1983, 219 (4587) : 967 - 969
  • [50] Reassessing the bulk ionic conductivity of solid-state electrolytes
    Uddin, Md-Jamal
    Cho, Sung-Jin
    SUSTAINABLE ENERGY & FUELS, 2018, 2 (07): : 1458 - 1462