Role of sulfur and phosphorous doping on the electrochemical performance of graphene oxide-based electrodes

被引:8
|
作者
Latif, Umar [1 ]
Raza, Mohsin Ali [1 ]
Rehman, Zaeem Ur [1 ]
Maqsood, Muhammad Faheem [2 ,3 ,4 ]
Mehdi, Syed Muhammad Zain [4 ]
Ali, Sharafat [5 ]
Khan, Muhammad Farooq [2 ]
Kumar, Sunil [4 ]
机构
[1] Univ Punjab, Inst Met & Mat Engn, Fac Chem & Mat Engn, Lahore 54590, Pakistan
[2] Sejong Univ, Dept Elect Engn, 209 Neungdong Ro, Seoul 05006, South Korea
[3] Amer Univ Sharjah, Coll Arts & Sci, Mat Sci & Engn Program, Sharjah 26666, U Arab Emirates
[4] Sejong Univ, Hybrid Mat Res Ctr, Dept Nanotechnol & Adv Mat Engn, Seoul 05006, South Korea
[5] Linnaeus Univ, Fac Technol, Dept Built Environm & Energy Technol, S-35252 Vaxjo, Sweden
基金
新加坡国家研究基金会;
关键词
Graphene oxide; Hydrothermal method; Supercapacitor; X-ray photoelectron Spectroscopy; Raman spectroscopy; Electrochemical; characterization; RAY PHOTOELECTRON-SPECTRA; RAMAN-SPECTROSCOPY; BINDING-ENERGIES; NICKEL; ESCA; REDUCTION;
D O I
10.1016/j.electacta.2024.144581
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Heteroatom doping of graphene oxide (GO) with phosphorous (P), and sulfur (S) was studied. In-situ grown binder-free electrodes of these doped and un-doped GO systems were developed via hydrothermal process. S-GO, P-GO, PS-GO, and un-doped hydrothermally treated GO (H-GO) electrodes were thoroughly investigated through physical and electrochemical characterization. The PS-GO electrode, comprising P (10.90 at%), S (0.3 at%), C (45.54 at%), O (36.36 at%), and Ni (2.38 at%) atoms, exhibited a mixed morphology of a few hundred nanometers doped GO flakes and dissolved Ni foam nanorods. Electrochemical analysis showed, this mixed morphology stimulates the charge storage ability of the PS-GO electrode and achieved a high specific capacity of 1218 C/g, compared to 647 C/g for H-GO at 1 mV/s. Electrochemical analysis revealed, charge was primarily stored through the capacitive charge storage mechanism, where only surface atoms are solely responsible for developing a double layer or facilitating redox reactions between electrode atoms and electrolyte ions. Additionally, the PS-GO electrode demonstrated an energy density of 76.94 Wh/kg at 1 A/g, which is much closer to that of batteries. We anticipate that PS-GO has the potential to be utilized as electrode material in modern energy storage devices.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Synthesis of graphene oxide-based nanofillers and their influence on the anticorrosion performance of epoxy coating in saline medium
    Rajitha, Kamalon
    Mohana, Kikkeri Narasimha Shetty
    DIAMOND AND RELATED MATERIALS, 2020, 108
  • [32] Microstructure and electrochemical properties of high performance graphene/manganese oxide hybrid electrodes
    Hamade, Fatima
    Radich, Emmy
    Davis, Virginia A.
    RSC ADVANCES, 2021, 11 (50) : 31608 - 31620
  • [33] Graphene Oxide/Metal Sulfide and Oxide Nanocomposite Electrodes for High Electrochemical Performance Supercapacitor Applications
    Xavier, Joseph Raj
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (04) : 1772 - 1785
  • [34] Recent progress in nickel oxide-based electrodes for high-performance supercapacitors
    Chime, Ugochi K.
    Nkele, Agnes C.
    Ezugwu, Sabastine
    Nwanya, Assumpta C.
    Shinde, N. M.
    Kebede, Mesfin
    Ejikeme, Paul M.
    Maaza, M.
    Ezema, Fabian I.
    CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 21 : 175 - 181
  • [35] Graphene Oxide/Metal Sulfide and Oxide Nanocomposite Electrodes for High Electrochemical Performance Supercapacitor Applications
    Xavier, Joseph Raj
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (04) : 1772 - 1785
  • [36] An Electrochemically Reduced Graphene Oxide-Based Electrochemical Immunosensing Platform for Ultrasensitive Antigen Detection
    Haque, Al-Monsur Jiaul
    Park, Hyejin
    Sung, Daekyung
    Jon, Sangyong
    Choi, Sung-Yool
    Kim, Kyuwon
    ANALYTICAL CHEMISTRY, 2012, 84 (04) : 1871 - 1878
  • [37] Effect of the particle size of graphene oxide powders on the electrochemical performance of graphene-based supercapacitors
    Lim, TaeGyeong
    Suk, Ji Won
    FUNCTIONAL COMPOSITES AND STRUCTURES, 2021, 3 (01):
  • [38] Graphene oxide-based electrochemical sensor: a platform for ultrasensitive detection of heavy metal ions
    Gong, Xuezhong
    Bi, Yunlong
    Zhao, Yihua
    Liu, Guozhen
    Teoh, Wey Yang
    RSC ADVANCES, 2014, 4 (47): : 24653 - 24657
  • [39] Performance of MEMS microcapacitor based on polypyrrole/graphene oxide electrodes
    National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, China
    不详
    Gongneng Cailiao, 2013, 19 (2768-2772): : 2768 - 2772
  • [40] Ultrathin Graphene Oxide-Based Nanocomposite Membranes for Water Purification
    Soomro, Faheeda
    Memon, Fida Hussain
    Khan, Muhammad Ali
    Iqbal, Muzaffar
    Ibrar, Aliya
    Memon, Ayaz Ali
    Lim, Jong Hwan
    Choi, Kyung Hyon
    Thebo, Khalid Hussain
    MEMBRANES, 2023, 13 (01)