Automatic real-time crack detection using lightweight deep learning models

被引:1
|
作者
Su, Guoshao [1 ]
Qin, Yuanzhuo [1 ]
Xu, Huajie [2 ]
Liang, Jinfu [3 ]
机构
[1] Guangxi Univ, Coll Civil Engn & Architecture, State Key Lab Featured Met Mat & Life Cycle Safety, Nanning 530004, Peoples R China
[2] Guangxi Univ, Coll Comp Elect & Informat, Guangxi Key Lab Multimedia Commun, Nanning 530004, Peoples R China
[3] Guangxi Construct Testing Ctr Co Ltd, Nanning 530005, Peoples R China
基金
中国国家自然科学基金;
关键词
Crack detection; Real-time detection; Deep learning; Convolutional neural network; Vision transformer; DAMAGE DETECTION; PAVEMENT CRACK; SEGMENTATION;
D O I
10.1016/j.engappai.2024.109340
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Crack detection methods using deep learning models such as convolutional neural network (CNN) and the newly developed vision transformer (ViT) are expanding. However, there is still a lack of comparative evaluation of these models in real-time crack detection. In this paper, a total of 14 lightweight deep learning models, comprising seven CNN models, five ViT models and two hybrid models, are trained to build deep learning-based crack detection methods. Comprehensive experiments are conducted on the publicly available DeepCrack dataset, including accuracy, inference time, robustness and transfer learning experiments to compare the effectiveness and real-time performance of models. In terms of accuracy metrics and robustness performance, the ViT model using SegFormer segmentation method with MiT-B1 as backbone has the best performance, and in terms of the model inference time, the ViT models using TopFormer segmentation method demonstrate the fastest performance. If both the accuracy and inference time are considered, TopFormer with its small version of the backbone network has relatively better real-time performance, while the ViT model using SegFormer segmentation method with MiT-B0 as backbone and the CNN model using the fully convolutional network (FCN) segmentation method with HRNetV2-W18-Small as backbone have higher mean intersection over union (mIoU) values on computers and mobile devices, respectively. We also find that pre-training on a dataset that is more relevant to the target application scenario rather than on the widely used ImageNet gives better results for deep learning models. This study provides a reference for engineers to make choices about lightweight deep learning models.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Real-Time Excavation Detection at Construction Sites using Deep Learning
    van Boven, Bas
    van der Putten, Peter
    Astrom, Anders
    Khalafi, Hakim
    Plaat, Aske
    ADVANCES IN INTELLIGENT DATA ANALYSIS XVII, IDA 2018, 2018, 11191 : 340 - 352
  • [32] Real-Time Accident Detection in Traffic Surveillance Using Deep Learning
    Ghahremannezhad, Hadi
    Shi, Hang
    Liu, Chengjun
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST 2022), 2022,
  • [33] Implementation of Deep Learning Models for Real-Time Face Mask Detection System Using Raspberry Pi
    Vanitha, V.
    Rajathi, N.
    Kalaiselvi, R.
    Sumathi, V. P.
    ADVANCED NETWORK TECHNOLOGIES AND INTELLIGENT COMPUTING, ANTIC 2022, PT II, 2023, 1798 : 290 - 304
  • [34] Efficient Real-Time Sign Detection for Autonomous Vehical in Hazy Environment Using Deep Learning Models
    Gupta, Rishik
    Kumar, Pratiksh
    Sobti, Priyanshu
    Kumar, Bagesh
    Shivam, Yuvraj
    Shukla, Prakhar
    ADVANCED NETWORK TECHNOLOGIES AND INTELLIGENT COMPUTING, ANTIC 2023, PT IV, 2024, 2093 : 239 - 257
  • [35] An efficient approach for automatic crack detection using deep learning
    Usharani, Shola
    Gayathri, R.
    Kovvuri, Uday Surya Deveswar Reddy
    Nivas, Maddukuri
    Md, Abdul Quadir
    Tee, Kong Fah
    Sivaraman, Arun Kumar
    INTERNATIONAL JOURNAL OF STRUCTURAL INTEGRITY, 2024, 15 (03) : 434 - 460
  • [36] Lightweight Neural Network for Real-Time Crack Detection on Concrete Surface in Fog
    Yao, Gang
    Sun, Yujia
    Yang, Yang
    Liao, Gang
    FRONTIERS IN MATERIALS, 2021, 8
  • [37] Lightweight Deep Learning Model for Real-Time Colorectal Polyp Segmentation
    Jeong, Seung-Min
    Lee, Seung-Gun
    Seok, Chae-Lin
    Lee, Eui-Chul
    Lee, Jun-Young
    ELECTRONICS, 2023, 12 (09)
  • [38] Exploring the effects of RNNs and deep learning frameworks on real-time, lightweight, adaptive time series anomaly detection
    Lee, Ming-Chang
    Lin, Jia-Chun
    Katsikas, Sokratis
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (28):
  • [39] Lightweight Real-Time Recurrent Models for Speech Enhancement and Automatic Speech Recognition
    Dhahbi, Sami
    Saleem, Nasir
    Gunawan, Teddy Surya
    Bourouis, Sami
    Ali, Imad
    Trigui, Aymen
    Algarni, Abeer D.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2024, 8 (06): : 74 - 85
  • [40] Real-Time Surveillance Using Deep Learning
    Iqbal, Muhammad Javed
    Iqbal, Muhammad Munwar
    Ahmad, Iftikhar
    Alassafi, Madini O.
    Alfakeeh, Ahmed S.
    Alhomoud, Ahmed
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021