Single-cell spatial transcriptomics in cardiovascular development, disease, and medicine

被引:0
作者
Han, Songjie [1 ]
Xu, Qianqian [1 ]
Du, Yawen [1 ]
Tang, Chuwei [1 ]
Cui, Herong [1 ,2 ]
Xia, Xiaofeng [1 ]
Zheng, Rui [1 ]
Sun, Yang [1 ]
Shang, Hongcai [1 ]
机构
[1] Beijing Univ Chinese Med, Dongzhimen Hosp, Key Lab Chinese Internal Med, Minist Educ, Beijing 100700, Peoples R China
[2] Beijing Univ Chinese Med, Sch Life Sci, Beijing 102488, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Cardiovascular disease; Precision medicine; Single-cell spatial transcriptomics; Single-cell transcriptome; Spatial transcriptome; Transcriptomics; GENE-EXPRESSION; RNA-SEQ; ATLAS; TECHNOLOGIES; RESOLUTION; IDENTITY; MAPS;
D O I
10.1016/j.gendis.2023.101163
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cardiovascular diseases (CVDs) impose a significant burden worldwide. Despite the elucidation of the etiology and underlying molecular mechanisms of CVDs by numerous studies and recent discovery of effective drugs, their morbidity, disability, and mortality are still high. Therefore, precise risk stratification and effective targeted therapies for CVDs are warranted. Recent improvements in single-cell RNA sequencing and spatial transcriptomics have improved our understanding of the mechanisms and cells involved in cardiovascular phylogeny and CVDs. Single-cell RNA sequencing can facilitate the study of the human heart at remarkably high resolution and cellular and molecular heterogeneity. However, this technique does not provide spatial information, which is essential for understanding homeostasis and disease. Spatial transcriptomics can elucidate intracellular interactions, transcription factor distribution, cell spatial localization, and molecular profiles of m RNA and identify cell populations causing the disease and their underlying mechanisms, including cell crosstalk. Herein, we introduce the main methods of RNA-seq and spatial transcriptomics analysis and highlight the latest advances in cardiovascular research. We conclude that single-cell RNA sequencing interprets disease progression in multiple dimensions, levels, perspectives, and dynamics by combining spatial and temporal characterization of the clinical phenome with multidisciplinary techniques such as spatial transcriptomics. This aligns with the dynamic evolution of CVDs ( e.g., "angina-myocardial infarction-heart failure" in coronary artery disease). The study of pathways for disease onset and mechanisms (e.g., age, sex, comorbidities) in different patient subgroups should improve disease diagnosis and risk stratification. This can facilitate precise individualized treatment of CVDs. <feminine ordinal indicator> 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).
引用
收藏
页数:13
相关论文
共 93 条
  • [1] Clonal Hematopoiesis-Driver DNMT3A Mutations Alter Immune Cells in Heart Failure
    Abplanalp, Wesley Tyler
    Cremer, Sebastian
    John, David
    Hoffmann, Jedrzej
    Schuhmacher, Bianca
    Merten, Maximillian
    Rieger, Michael A.
    Vasa-Nicotera, Mariuca
    Zeiher, Andreas M.
    Dimmeler, Stefanie
    [J]. CIRCULATION RESEARCH, 2021, 128 (02) : 216 - 228
  • [2] Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data
    Andrews, Tallulah S.
    Kiselev, Vladimir Yu
    McCarthy, Davis
    Hemberg, Martin
    [J]. NATURE PROTOCOLS, 2021, 16 (01) : 1 - 9
  • [3] A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart
    Asp, Michaela
    Giacomello, Stefania
    Larsson, Ludvig
    Wu, Chenglin
    Furth, Daniel
    Qian, Xiaoyan
    Wardell, Eva
    Custodio, Joaquin
    Reimegard, Johan
    Salmen, Fredrik
    Osterholm, Cecilia
    Stahl, Patrik L.
    Sundstrom, Erik
    Akesson, Elisabet
    Bergmann, Olaf
    Bienko, Magda
    Mansson-Broberg, Agneta
    Nilsson, Mats
    Sylven, Christer
    Lundeberg, Joakim
    [J]. CELL, 2019, 179 (07) : 1647 - +
  • [4] Epithelial-to-Mesenchymal Transition-Derived Heterogeneity in Head and Neck Squamous Cell Carcinomas
    Baumeister, Philipp
    Zhou, Jiefu
    Canis, Martin
    Gires, Olivier
    [J]. CANCERS, 2021, 13 (21)
  • [5] Single-Cell RNA-Seq Reveals a Crosstalk between Hyaluronan Receptor LYVE-1-Expressing Macrophages and Vascular Smooth Muscle Cells
    Burger, Fabienne
    Baptista, Daniela
    Roth, Aline
    Brandt, Karim J.
    da Silva, Rafaela Fernandes
    Montecucco, Fabrizio
    Mach, Francois
    Miteva, Kapka
    [J]. CELLS, 2022, 11 (03)
  • [6] Integrating single-cell transcriptomic data across different conditions, technologies, and species
    Butler, Andrew
    Hoffman, Paul
    Smibert, Peter
    Papalexi, Efthymia
    Satija, Rahul
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (05) : 411 - +
  • [7] SiglecF(HI) Marks Late-Stage Neutrophils of the Infarcted Heart: A Single-Cell Transcriptomic Analysis of Neutrophil Diversification
    Calcagno, David M.
    Zhang, Claire
    Toomu, Avinash
    Huang, Kenneth
    Ninh, Van K.
    Miyamoto, Shigeki
    Aguirre, Aaron D.
    Fu, Zhenxing
    Brown, Joan Heller
    King, Kevin R.
    [J]. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (04): : 1 - 39
  • [8] Characterizing the biology of primary brain tumors and their microenvironment via single-cell profiling methods (October, noac211, 2022)
    Castro, L. Nicolas Gonzalez
    Liu, Ilon
    Filbin, Mariella
    [J]. NEURO-ONCOLOGY, 2023, 25 (01) : 211 - 211
  • [9] Transcriptomics and single-cell RNA-sequencing
    Chambers, Daniel C.
    Carew, Alan M.
    Lukowski, Samuel W.
    Powell, Joseph E.
    [J]. RESPIROLOGY, 2019, 24 (01) : 29 - 36
  • [10] Dissecting mammalian spermatogenesis using spatial transcriptomics
    Chen, Haiqi
    Murray, Evan
    Sinha, Anubhav
    Laumas, Anisha
    Li, Jilong
    Lesman, Daniel
    Nie, Xichen
    Hotaling, Jim
    Guo, Jingtao
    Cairns, Bradley R.
    Macosko, Evan Z.
    Cheng, C. Yan
    Chen, Fei
    [J]. CELL REPORTS, 2021, 37 (05):