Interpretable feature-temporal transformer for short-term wind power forecasting with multivariate time series

被引:6
|
作者
Liu, Lei [1 ]
Wang, Xinyu [1 ]
Dong, Xue [2 ]
Chen, Kang [1 ]
Chen, Qiuju [1 ,3 ]
Li, Bin [1 ]
机构
[1] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei 230022, Peoples R China
[2] Key Lab Far Shore Wind Power Technol Zhejiang Prov, Hangzhou 311122, Peoples R China
[3] Lab Big Data & Decis, Changsha 410037, Peoples R China
基金
中国国家自然科学基金;
关键词
Short-term; Wind power forecasting; Interpretable; Transformer; Self-attention; SPEED; MODEL;
D O I
10.1016/j.apenergy.2024.124035
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The inherent randomness and volatility of wind power generation present significant challenges to the reliable and secure operation of the power system. Therefore, it is crucial to have interpretable wind power forecasting (WPF) to ensure seamless grid integration and effective risk assessment. Existing forecasting models often focus on improving WPF performance and ignore the interpretability of the model, resulting in ambiguous forecasting. In this paper, the interpretable feature-temporal transformer (IFTT) for short-term wind power forecasting with multivariate time series is presented. The model uses an encoder-decoder architecture to effectively integrate historical information and future prior information from multiple variables. The designed decoupled feature- temporal self-attention (DFTA) module and variable attention network (VAN) effectively realize the interpretability of temporal information and multi-variable inputs while extracting important features. The Auxiliary Forecasting Network (AFN) plays a key role in providing pseudo-future wind speed predictions, which serve as an essential input for the model's decoder, and enhancing forecasting accuracy through multi-task learning. Experimental results on multiple datasets in different geographical locations show that the proposed algorithm is superior to various advanced methods. Besides, the interpretability of the IFTT model offers valuable insights for ensuring the safety of wind power utilization and supporting informed risk decision-making.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Spatial and Temporal Attention-Enabled Transformer Network for Multivariate Short-Term Residential Load Forecasting
    Zhao, Hongshan
    Wu, Yuchen
    Ma, Libo
    Pan, Sichao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [22] Very Short-term Spatial and Temporal Wind Power Forecasting: A Deep Learning Approach
    Hu, Tianyu
    Wu, Wenchuan
    Guo, Qinglai
    Sun, Hongbin
    Shi, Libao
    Shen, Xinwei
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2020, 6 (02): : 434 - 443
  • [23] Development of Short-Term Wind Power Forecasting Methods
    Cao, Bo
    Chang, Liuchen
    2022 IEEE 7TH SOUTHERN POWER ELECTRONICS CONFERENCE, SPEC, 2022,
  • [24] Short-term multi-step wind power forecasting based on spatio-temporal correlations and transformer neural networks
    Sun, Shilin
    Liu, Yuekai
    Li, Qi
    Wang, Tianyang
    Chu, Fulei
    ENERGY CONVERSION AND MANAGEMENT, 2023, 283
  • [25] Very short-term wind power forecasting considering static data: An improved transformer model
    Wang, Sen
    Sun, Yonghui
    Zhang, Wenjie
    Chung, C. Y.
    Srinivasan, Dipti
    ENERGY, 2024, 312
  • [26] Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory
    Lopez, Erick
    Valle, Carlos
    Allende, Hector
    Gil, Esteban
    Madsen, Henrik
    ENERGIES, 2018, 11 (03)
  • [27] A review of short-term wind power generation forecasting methods in recent technological trends
    Tuncar, Ezgi Arslan
    Saglam, Safak
    Oral, Bulent
    ENERGY REPORTS, 2024, 12 : 197 - 209
  • [28] Short-term Wind and PV Generation Forecasting of time-series using ANN
    Sahu, Manas Kumar
    Sahoo, Balaram
    Khatoi, Manoj
    Behera, Sasmita
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICCS), 2019, : 1328 - 1333
  • [29] Short-Term Spatio-Temporal Forecasting of Photovoltaic Power Production
    Agoua, Xwegnon Ghislain
    Girard, Robin
    Kariniotakis, George
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2018, 9 (02) : 538 - 546
  • [30] An Ultra-Short-Term and Short-Term Wind Power Forecasting Approach Based on Optimized Artificial Neural Network with Time Series Reconstruction
    Zha, Lihan
    Jiang, DongXiang
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 2068 - 2073