Contrastive multi-interest graph attention network for knowledge-aware recommendation

被引:5
作者
Liu, Jianfang [1 ,2 ]
Wang, Wei [3 ]
Yi, Baolin [1 ]
Shen, Xiaoxuan [1 ]
Zhang, Huanyu [1 ]
机构
[1] Cent China Normal Univ, Natl Engn Res Ctr Educ Big Data, Wuhan 430079, Hubei, Peoples R China
[2] Pingdingshan Univ, Software Coll, Pingdingshan 467000, Henan, Peoples R China
[3] Hubei Univ Chinese Med, Coll Informat Engn, Wuhan 430065, Hubei, Peoples R China
关键词
Contrastive learning; Multi-interest; Knowledge graph; Recommendation; Graph attention network;
D O I
10.1016/j.eswa.2024.124748
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Acquiring high-quality representations for both users and items is essential, facilitating a wide range of recommendation scenarios. Utilizing graph neural networks for knowledge-aware recommendation is a recent trend. However, there are two deficiencies in existing GNN-based knowledge-aware models: (1) They are coarse-grained in user representation, failing to capture the multi-interest distribution of users. (2) The supervised signals come only from historical interactions, failing to provide high-quality representations due to sparse data. In this paper, we propose a novel model, CMGAN with Contrastive Multi-interest Graph Attention Network, , tailored for personalized knowledge-aware recommendations. Specifically, CMGAN employs a collaborative knowledge graph encoder, enhancing node representations through relational-aware embedding aggregation. Then a dynamic multi-interest generator crafts fine-grained multi-interest representations, adeptly extracting varied interests for each user based on their historical interactions. Furthermore, CMGAN innovates by integrating multi-level contrastive learning to refine representations at both node and multi-interest granularity. It consists of collaborative knowledge graph contrastive learning and multi-interest contrastive learning. The former pursues the acquisition of node representations that are more uniformly distributed, while the latter aims to obtain interest representations that are more distinct. A series of experiments on three benchmark datasets indicate that our model surpasses current state-of-the-art models. The code can be obtainable at https://github.com/liujianfang2021/CMGAN.
引用
收藏
页数:11
相关论文
共 68 条
[1]   Learning Heterogeneous Knowledge Base Embeddings for Explainable Recommendation [J].
Ai, Qingyao ;
Azizi, Vahid ;
Chen, Xu ;
Zhang, Yongfeng .
ALGORITHMS, 2018, 11 (09)
[2]  
[Anonymous], 2009, Advances in Artificial Intelligence
[3]  
Ba J, 2014, ACS SYM SER
[4]  
Balloccu G, 2024, Arxiv, DOI arXiv:2310.16452
[6]  
Bordes A., 2013, ADV NEURAL INFORM PR, V26
[7]  
Boski M, 2017, 2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS)
[8]   Unifying Knowledge Graph Learning and Recommendation: Towards a Better Understanding of User Preferences [J].
Cao, Yixin ;
Wang, Xiang ;
He, Xiangnan ;
Hu, Zikun ;
Chua, Tat-Seng .
WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, :151-161
[9]  
Castells P, 2023, arXiv
[10]   Controllable Multi-Interest Framework for Recommendation [J].
Cen, Yukuo ;
Zhang, Jianwei ;
Zou, Xu ;
Zhou, Chang ;
Yang, Hongxia ;
Tang, Jie .
KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, :2942-2951